
Program extraction from proofs

Ulrich Berger - Swansea

MFPS, Pitsburgh, USA, 25 May 2011

1 / 28

Outline

Proofs as programs

Program extraction in computable analysis

Towards memoized functionals in higher types

Conclusion

2 / 28

Proofs as programs

Program extraction in computable analysis

Towards memoized functionals in higher types

Conclusion

3 / 28

The Curry-Howard correspondence
(or Brouwer-Heyting-Kolmogorov interpretation)

Formulas correspond to data types
Proofs correspond to programs

A ∨ B disjoint sum
A ∧ B cartesian product
A→ B function space
∃x A cartesian product
∀x A function space

A proof of a formula A correponts to a program constructing an
element of A.

I What is a function?
I What if the quantified x ranges over abstract objects?
I How do we interpret logical axioms, e.g. A ∨ ¬A?
I How do we interpret maths axioms, e.g. induction, choice?
I Why is it interesting and useful?

4 / 28

Why Curry-Howard is interesting and useful
Foundations
Constructive foundation of Mathematics (Brouwer, Heyting,
Kolmogorov, Gödel, Kleene, Kreisel, Martin-Löf). Properties of
logical and mathematical systems (Realizability ⇒ existence and
disjunction property; Dialectica Interpretation ⇒ consistency)

Programming
Program extraction (Minlog, Coq, Isabelle, Agda). In Minlog,
realizability is used to automatically extract from a proof a
program and its correctness proof (⇒ Monika’s talk).

Mathematics
Approximation-, fixpoint- and ergodic-theory (Kohlenbach, DI).
The study of function spaces has led to new developments in
computability theory, topology, domain theory. The problem of
C-H interpreting classical choice axioms has led to new recursion
principles such as bar recursion and products of selection functions
(⇒ Martin’s and Paulo’s talks).

5 / 28

What is a function and when is it a proof of an implication?

BHK-interpretation: A proof of A→ B is a function f mapping
proofs of A to proofs of B.

I f should be computable. What does this mean if A itself
consists of functions? (⇒ computability in higher types)

I Don’t we need a proof that f does it’s job? (circularity!)

6 / 28

Realizing an implication
Realizability (Kleene, Kreisel)

f r (A→ B) ≡ ∀a (a rA→ f (a) rB)

Dialectica Interpretation (Gödel)

(f , g)(A→ B) ≡ ∀a, v (ag(a, v)A→ f (a)vB)

where aA ≡ ∀u (auA) and bB ≡ ∀v (bvB) are purely universal
formulas.

The idea is that for the conclusion, f (a)vB, the premise, ∀u (auA)
is used for finitely many u only (continuity argument), in fact, a
single u = g(a, v) suffices.

Both interpretations extract from a proof of A a term M and a
proof of M rA (Soundness Theorem).

In the DI the proof of M rA takes place in a quantifier free system!
7 / 28

Realizing quantifiers

(x , a) r ∃x A(x) ≡ a rA(x)

f r ∀x A(x) ≡ ∀x (f (x) rA(x))

x may range over abstract object (reals, real functions, . . .).

This seems to require a realizing programming language with data
types for such abstract objects.

Alternative: uniform realization of quantifiers

a r ∃x A(x) ≡ ∃x (a rA(x))

a r ∀x A(x) ≡ ∀x (a rA(x))

For concrete objects we may relativize the quantifiers:

∀x (N(x)→ ∃y (N(y) ∧ (x = 2y ∨ x = 2y + 1)))

where N is defined such that n rN(x) means that n is a
representation of the natural number x .
The extracted program computes integer division by 2.

8 / 28

Program extraction and the law of excluded middle

Realizing, say, ∀x (N(x)→ A(x) ∨ ¬A(x)) would mean to
construct a program computing for every (representation of) a
natural number x a realizer of A(x) or a realizer or ¬A(x). This is
impossible, in general.

But, one can eliminate LEM in proofs of formulas of the form

∀x (N(x)→ ∃y (N(y) ∧ A0(x , y))

where A0(x , y) is decidable, using Gödel’s negative translation and
the Friedman/Dragalin A-translation (⇒ Monika’s talk).

9 / 28

Other approaches to program extraction from classical
proofs

I ε-substitution calculus (Hilbert).

I Interpretation of ¬¬A→ A by continuations (Felleisen).

I Direct computational interpretation of classical sequent
calculus (λµ-calculus, Parigot).

I Interpretation of restricted forms of LEM by learning based
realizability (Berardi, Aschieri)

I Realizability interpretation of classical systms via stacks and
processes (Krivine).

10 / 28

Interpreting induction
Induction on natural numbers

A(0) ∧ ∀x (A(x)→ A(x + 1))→ ∀x (N(x)→ A(x))

is a special case of induction on an inductively defined predicate:
Set Φ(X) := {0} ∪ {x + 1 | x ∈ X}, then N = µΦ = µX .Φ(X)

In general, one has for a monotone predicate transformer Φ an
induction schema for its least fixed point µΦ:

Φ(P) ⊆ P → µΦ ⊆ P

The data type associated with µΦ is the initial algebra
Inϕ : ϕ(µϕ)→ µϕ of a functor ϕ derived from Φ. The induction
scheme is realized by the iterator Itϕ that iterates any “step
function” (i.e. ϕ-algebra) f : ϕ(α)→ α to an algebra morphism
Itϕ(f) : µϕ→ α with computation rule (i.e. morphism equation)

Itϕ(f) Inϕ(m) = f (mapϕ(Itϕ(f))(m))

11 / 28

Example: Natural numbers
Recall N = µΦ where

Φ(X) = {0} ∪ {x + 1 | x ∈ X}
= {y | y = 0 ∨ ∃x (y = x + 1 ∧ x ∈ X)}

The functor associated with Φ is obtained by removing all
first-order parts from Φ: ϕ(α) = 1 + α The initial algebra
Inϕ : ϕ(µϕ)→ µϕ is the familiar structure of unary natural
numbers N := µϕ generated by zero and successor.

A step function f : ϕ(α)→ α consists of f0 : α and f1 : α→ α.
The iteration g := Itϕ(f) : N→ α is defined recursively by
g(0) = f0, g(S(n)) = f1(g(n)).

Remarks: 1. The variables x , y may range over abstract objects,
for example the real numbers. 2. Category theory is only needed to
explain realizability. The “user” doesn’t have to know anything
about this.

12 / 28

Interpreting choice axioms
The (constructive) axiom of choice

∀x ∃y A(x , y)→ ∃f ∀x A(x , f (x))

has a trivial realizer, namely the identity (both with the traditional
and the uniform interpretation of quantifiers)

Much harder is the classical axiom of choice which is obtained by
double negation translation of the constructive axiom of choice.
Even classical countable classical choice is hard to realize:

∀x ∈ N (¬¬∃y A¬¬(x , y)→ ¬¬∃f ∀x A¬¬(x , f (x)))

Classical countable choice is the main stumbling block in extending
program extraction from classical proofs to analysis.

More about this in the other three talks.

In contrast, the negative translation of an induction axiom is
unproblematic, since it is again instances of an induction axiom.

13 / 28

Proofs as programs

Program extraction in computable analysis

Towards memoized functionals in higher types

Conclusion

14 / 28

Coinduction
Coinduction is dual to induction. Given a monotone predicate
transformer Φ we hav a coinduction scheme for its greatest fixed
point νΦ:

P ⊆ Φ(P)→ P ⊆ νΦ

The associated data type is the final coalgebra
Outϕ : νϕ→ ϕ(µϕ).

The coinduction scheme is realized by the coiterator Coitϕ that
coiterates any “step function” (i.e. ϕ-coalgebra) f : α→ ϕ(α) to a
coalgebra morphism Coitϕ(f) : α→ µϕ with computation rule
(i.e. morphism equation)

Outϕ(Coitϕ(f)(a)) = mapϕ(Coitϕ(f))(f (a))

Equivalently, using the fact that Outϕ has an inverse Inϕ,

Coitϕ(f)(a) = Inϕ(mapϕ(Coitϕ(f))(f (a)))

15 / 28

Example: Signed digit representation

We are after a signed digit representation of real numbers x in the
compact interval I := [−1, 1], i.e. we want

x =
∞∑
n=0

dn · 2−(n+1) (1)

where di ∈ SD := {−1, 0, 1}.

Note (1) is equivalent to the fact that there are x0, x1, . . . ∈ I such
that x = 1/2(d0 + x0) = 1/2(d0 + 1/2(d1 + x1)) = . . .

This suggests the following coinductive predicate on I:

C0 = νX .{x | ∃d ∈ SD∃x0 (x =
d + x0

2
∧ X (x0)}

The data type associated with C0 is type of infinite streams of
signed digits. A stream d0, d1, . . . realizes C0(x) precisely when (1)
holds.

16 / 28

Extracting exact real number algorithms

Using coinduction one can prove, for example:

Theorem 1 x ∈ C0 iff ∀n ∈ N ∃q ∈ Q ∩ I |x − q| ≤ 2−n.

Theorem 2 If x , y ∈ C0 then x+y
2 ∈ C0.

Theorem 3 If x , y ∈ C0 then xy ∈ C0.

From the proofs of these theorems one extracts a program
translating between the signed-digit- and the
Cauchy-representation, as well as implementations of addition and
multiplication w.r.t. the signed digit representation.

Similar implementations were studied by Edalat, Potts, Heckmann,
Escardo, Marcial-Romero, Ciaffaglione, Gianantonio, . . .

The difference is that we extract the programs –together with their
correctness proofs.

17 / 28

Characterizing uniform continuity by induction/coinduction

Recall the coinductive defintition of reals in I that have a signed
digit representation:

C0 = νX .{x | ∃d ∈ SD∃x0 (x = avd(x0) ∧ X (x0)}

where avd(x0) := d+x0
2 .

We generalize this to a characterization of (uniformly) continuous
functions f : I→ I:

C1 = νX .µY .{f | ∃d ∈ SD∃f0 (f = avd ◦ f0 ∧ X (f0))

∨ ∀d ∈ SDY (f ◦ avd)}

The left disjunct is analoguous to C0 and means that f emits a
digit.

The right disjunct means that f absorbs a digit from the input.

18 / 28

Memo trees (tries?) for continuous functions

Theorem 4 f ∈ II is continuous iff f ∈ C1.

From the proof of this theorem one extracts programs translating
between realisers of “f is continuous” (where continuity has to be
defined in a contructively meaningful way) and realisers of
“f ∈ C1”.

What is a realiser of “f ∈ C1”?

It is a finitely branchning non-wellfounded tree describing when f
emits and absorbs digits. I.p. it is a data structure, not a function.

Similar trees have been studied by P. Hancock, D. Pattinson, N.
Ghani.

19 / 28

Extracting memoized exact real arithmetic

The definition of C1 ⊆ II can be generalised to Cn ⊆ I(In).

Theorem 5 The average function lies in C2.

Theorem 6 Multiplication lies in C2.

From Theorems 5,6 one extracts implementations of addition and
multiplication as memo-tries (relation to work by Hinze and
Altenkirch?)

Experiments show considerable speed-up when sampling “hard”
functions (e.g. high iterations of the logistic map) on a very fine
grid.

Theorem 7 If f ∈ C1, then
∫
f ∈ C0.

The ectracted program program has some similarity with
A. Simpson’s, but is more efficient because the functions to be
integrated are represented differently.

20 / 28

Proofs as programs

Program extraction in computable analysis

Towards memoized functionals in higher types

Conclusion

21 / 28

22 / 28

23 / 28

24 / 28

Proofs as programs

Program extraction in computable analysis

Towards memoized functionals in higher types

Conclusion

25 / 28

26 / 28

27 / 28

28 / 28

	Proofs as programs
	Program extraction in computable analysis
	Towards memoized functionals in higher types
	Conclusion

