
i

i

“p01c07˙heu” — 2008/11/16 — 15:59 — page 205 — #1
i

i

i

i

i

i

Handbook of Satisfiability
Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsh (Eds.)
IOS Press, 2009
c© 2009 Oliver Kullmann and IOS Press. All rights reserved.

205

Chapter 7

Fundaments of Branching Heuristics
Oliver Kullmann

7.1. Introduction

The topic of this chapter is to provide foundations for “branching heuristics”.

The whole field of “heuristics” is very diverse, and we will concentrate on a

specific part, where developments in the last four decades can be comprised in

what actually deserves to be called a “theory”. A full version of this chapter,

containing all proofs and extensive examples, is available in [Kul08a].
The notion of a “heuristics” is fundamental for the field of Artificial Intel-

ligence. The (early) history of the notion of “heuristics” is discussed in [BF81],
Section II.A, and the usage of this notion in the SAT literature follows their def-
inition of a heuristics as a method using additional information to restrict the
search space size, though in this chapter we consider a restricted context, where
completeness is not an issue, but the heuristical component of the search process
affects only resource usage, not correctness. Furthermore we only study a specific
form of search processes here, namely backtracking search. We consider the situ-
ation where we have a problem instance F where all direct (“efficient”) methods
fail, and so F has to be split into subproblems. In the context of this chapter we
basically assume that the method for splitting F is already given, yielding pos-
sible “branchings” F ; F1, . . . , Fm, splitting F into m “subproblems” Fi, and
the task of the heuristic is to compare different branchings and to find the “best”
branching among them. Let us assume that we have given three branchings to
compare:
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We see an important aspect of our abstract analysis: Each branch is labelled by a

positive real number, which measures the “distance”, that is, how much “simpler”

the problem became (w.r.t. a certain aspect). At this level of abstraction not

only the branchings but also these distances are given, and the question is what

can be done with these numbers, how can they be used to compare these three
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206 Chapter 7. Fundaments of Branching Heuristics

branchings? Obviously, all that counts then are the tuples of distances, so-called

“branching tuples”. We get a := (2, 2), b := (3, 3, 4, 9), c := (4, 5, 6, 6, 5, 6).

The first part of this chapter is devoted to the combinatorics and analysis of

branching tuples. We will see that a canonical value τ(t) ∈ R≥1 (see Definition

7.3.2) can be computed for each branching tuple, and that these values under

fairly general circumstances yield the (only) answer to the problem of comparing

branching tuples: The smaller the τ -value the better the tuple. For the above

branching tuples the computation yields τ(a) = 1.4142 . . ., τ(b) = 1.4147 . . .,

and τ(c) = 1.4082 . . ., and thus the third branching is the best, followed by the

first branching, and then the second branching (all under the assumption that all

that is given are these numbers). The τ -function arises naturally from standard

techniques from difference equations, and for example τ(b) is the (unique) positive

solution of x−3+x−3+x−4+x−9 = 1. Using an appropriate scaling, the τ -function

yields a (generalised) mean T (in a precise sense), and the task of evaluating

branchings can be understood as extracting a generalised mean-value from each

tuple (where in this interpretation the tuple is the better the larger the mean).

It is worth mentioning here that branching tuples are arbitrary tuples of positive

real numbers, and thus are amenable to optimisation techniques.

After having developed a reasonable understanding of branching tuples, based

on the analysis of rooted trees which consist of these branching tuples w.r.t. a run

of the given backtracking solver, we then turn to the question of how actually to

compute “good” distances. At this time the general theory can only give rough

guidelines, which however suffices to compare different distance functions w.r.t.

their appropriateness. So we can compare distance functions, and we can also

optimise them. But finally we have to come up with some concrete distance, and

fortunately, in the second part of this chapter, at least for CNF in the context of

so-called “look-ahead” solvers a reasonable answer can be given, obtained by a

remarkable convergence of theoretical and empirical studies. We need to remark

here that heuristics for so-called “conflict-driven” solvers cannot be fully handled

here, basically since these solvers are not really based on backtracking anymore,

that is, we cannot speak of independent branches anymore, but rather an iterative

process is taking place.

In more details, the content of this chapter is as follows:

1. The general framework and its assumptions are discussed in Section 7.2.

First we discuss the focus of our approach, and which questions are ex-

cluded by this theory, which is based on comparing branchings by con-

densing them into branching tuples. The way these tuples arise is based

on “measures” (of approximated problem complexity) or more generally

on “distances”, and we discuss the meaning of this process of extracting

branching tuples. Alternative branchings are represented by alternative

branching tuples, and so we need to order branching tuples by some linear

quasi-order (smaller is better), choosing then a branching with smallest

associated branching tuple. This order on the set of branching tuples is

given by applying a “projection function”, and by an introductory example
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we motivate the “canonical projection”, the τ -function.

2. The combinatorics of branching tuples and the fundamental properties of

the τ -function are the subject of Section 7.3. In particular we consider

bounds on the τ -function (resp. on the associated mean T). These bounds

are important to derive upper and lower bounds on tree sizes. And under

special circumstances one might wish to consider alternatives to the τ -

function as a “projection” (comprising a branching tuple to one number),

and then these bounds provide first alternatives. Section 7.3 is concluded

by introducing the fundamental association of probabilities with branching

tuples.

3. Then in Section 7.4 we discuss the fundamental method of estimating

tree sizes, first for trees with given probability distributions, and then for

trees where the probability distribution is derived from a given distance

by means of the τ -function.

4. The τ -function is “in general” the only way to comprise branching tu-

ples into a single number, however the precise value of the τ -function is

not of importance, only the linear quasi-order it induces on the set of all

branching tuples; this is proven in Section 7.5.

5. Though the τ -function is the canonical projection in general, there might

be reasons to deviate from it under special circumstances. The known facts

are presented in Section 7.6. For binary branching tuples (t1, t2) (dominant

for practical SAT solving) we relate the projections t1 + t2 and t1 · t2 to the

τ -function, yielding a strong analytical argument why the “product rule”

is better than the “sum rule”, complementing the experimental evidence.

6. With Section 7.7 we enter the second part of this chapter, and we discuss

the known distances w.r.t. practical SAT solving.

7. As already mentioned, at present there is no theory for choosing a “good”

distance for a particular class of problem instances (other than the trivial

choice of the optimal distance), but from the general theory developed in

the first part of this chapter we obtain methods for improving distance

functions, and this is discussed in Section 7.8.

8. Our approach on branching is based on a two-phase model, where first

the branching itself is chosen, and then, in a second step, the order of

the branches. Methods for finding good orders (for SAT problems) are

discussed in Section 7.9.

9. The ideas for concrete distances, as presented in Section 7.7, also have

bearings on more general situations than just boolean CNF-SAT, and es-

pecially our general theory is applicable in a much larger context. A quick

outlook on this topic is given in Section 7.10.

7.2. A general framework for branching algorithms

A general framework for heuristics for branching algorithms is as follows: Consider

a non-deterministic machine M for solving some problem, where the computation

terminates and is correct on each possible branch, and thus the decisions made
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during the run of the machine only influence resource consumption. The task for

a heuristics H is to make the machine deterministic, that is, at each choice point

to choose one of the possible branches, obtaining a deterministic machine MH,

where typically time and/or space usage is to be minimised. Likely not much can

be said about the choice-problem in this generality, since no information is given

about the choices. The focus of this article is on the problem of good choices

between different possibilities of splitting problems into (similar) subproblems,

where for each possible choice (i.e., for each possible splitting) we have (reason-

able) information about the subproblems created. Not all relevant information

usable to gauge branching processes for SAT solving can be represented (well) in

this way, for example non-local information is hard to integrate into this “recur-

sive” picture, but we consider the splitting-information as the central piece, while

other aspects are treated as “add-ons”.

7.2.1. Evaluating branchings

The basic scenario is that at the current node v of the backtracking tree we have

a selection B(v) = (B1, . . . , Bm) of branchings given, and the heuristic chooses

one. Each branching is (in this abstract framework) considered as a tuple Bi =

(b1, . . . , bk) of branches, where each bi is a “smaller” problem instance, and k

is the width of the branching. If the determination of the order of branches is

part of the heuristics, then all k! permutations of a branching are included in

the list B(v), otherwise a standard ordering of branches is chosen. If we consider

branching on a boolean variable, where the problem instance contains n variables,

and all of them are considered by the heuristics, then the selection B(v) contains

2n branchings if the order of the two branches is taken into account, and only n

branchings otherwise.

The problem is solved in principle, if we have precise (or “good”) knowledge

about the resource consumption of the subproblems bi (in the order they are

processed, where the running time of bi might depend on the running time of

bj for j < i), since then for every possible branching we sum up the running

times of the branches (which might be 0 if the branch is not executed) to get the

total running time for this branching, and we choose a branching with minimal

running time. If ordinary backtracking order is not followed (e.g., using restarts,

or some form of evaluating the backtracking tree in some other order), or branches

influence other branches (e.g., due to learning), then this might be included in

this picture by the assumption of “complete clairvoyance”.

Though this picture is appealing, I am not aware of any circumstances in

(general) SAT solving where we actually have good enough knowledge about the

resource consumption of the subproblems bi to apply this approach successfully.

Even in the probabilistically well-defined and rather restricted setting of random

3-SAT problems, a considerable effort in [Ouy99] (Chapter 5) to construct such

a “rational branching rule” did not yield the expected results. The first step

towards a practical solution is to use (rough) estimates of problem complexity,

captured by a measure µ(F ) of “problem complexity”. We view µ(F ) as a kind of
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logarithm of the true complexity. For example, the trivial SAT algorithm has the

bound 2n(F ), and taking the logarithm (base 2) we obtain the most basic measure

of problem complexity here, the number n(F ) of variables. This “logarithmic”

point of view is motivated by the optimality result Lemma 7.4.9. Progress in

one branch F ; F ′ then can be measured by ∆µ(F, F ′) = µ(F ) − µ(F ′) > 0.

However, since at this time the practical measures µ(F ) are too rough for good

results, instead of the difference ∆µ(F, F ′) a more general “distance” d(F, F ′) > 0

needs to be involved, which estimates, in some heuristic way, the prospects F ′

offers to actually be useful in the (near) future (relative to F , for the special

methods of the algorithm considered). Before outlining the framework for this

kind of analysis, two basic assumptions need to be discussed:

• A basic assumption about the estimation of branching quality is homo-

geneity : The branching situation might occur, appropriately “relocated”,

at many other places in the search tree, and is not just a “one-off” situ-

ation. If we have a “special situation” at hand (and we are aware of it),

then, in this theoretical framework, handling of this special situation is not

the task of the heuristics, but of the “reduction” for the currently given

problem (compare Subsection 7.7.2).

• Another abstraction is, that as for theoretical upper-bounds, a “mathe-

matical running time” is considered: The essential abstraction is given by

the search tree, where we ignore what happens “inside a node”, and then

the mathematical running time is the number of nodes in this tree. Real

running times (on real machines) are not considered by (current, abstract)

heuristics. In the literature (for example in [Ouy99]) one finds the attempt

of taking the different workloads at different nodes into account by measur-

ing the (total) number of assignments to variables, but this works only for

special situations, and cannot be used in general. Furthermore, practice

shows that typically, given the number of nodes in the search tree and some

basic parameters about the problem size, curve-fitting methods yield good

results on predicting the actual running time of a solver.1

7.2.2. Enumeration trees

We focus on algorithms where an enumeration tree is built, and where the main

heuristical problem is how to control the growth of the tree.

1. We do not consider “restarts” here, that is, rebuilding the tree, possibly

learning from prior experiences. In the previous phase of SAT-usage, em-

phasise was put on random restarts, with the aim of undoing bad choices,

while in the current phase randomness seems no longer important, but

the effects of learning are emphasised. In this sense, as remarked by John

Franco, restarts can be seen as a kind of “look-ahead”.

1The framework we develop here actually is able to handle different run times at different
nodes by attaching different weights to nodes. However in this chapter, where the emphasise is
on setting up the basic framework, we do not consider this; see [Kul08a] for how to generalise
the framework.
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2. We assume mostly a depth-first strategy.

3. “Intelligent backtracking” (that is, not investigating the second branch in

the case of an unsatisfiable first branch where the conflict does not depend

on the branching) is considered as accidental (not predictable), and thus

not included in heuristical considerations.

4. “Jumping around” in the search tree in order to prioritise nodes with

higher probability of finding a satisfying assignment (like in [Hv08]) is

considered as a layer on top of the heuristics (a kind of control layer),

and is not considered by the core heuristics (given the current state of

research).

5. The effect one branch might have on others (via “global learning”) is also

considered a secondary effect, out of our control and thus not directly

covered by the heuristics.

6. As discussed in [Kul08b], conflict-driven solvers actually tend to choose

an iterative approach, not creating independent sub-problems for branch-

ing, but just choosing one branch and leaving it to learning to cater for

completeness. Such a process seems currently unanalysable.

After having outlined what is to be included in our analysis, and what is to be left

out, we now give a first sketch of the framework to be developed in this article.

7.2.3. A theoretical framework

For the author of this chapter, the theory developed here originated in the theo-

retical considerations for proving upper bounds on SAT decision (see Section 7.7.3

for further comments), and so the underlying “driving force” of the heuristics is

the minimisation of an upper bound on the search tree size. Only later did I see

that in [Knu75] actually the same situation is considered, only from a different

point of view, a probabilistic one where a path through the search tree is chosen

by randomly selecting one successor at each inner node.2

Example 7.2.1. An instructive example is the first non-trivial 3-SAT bound

([Luc84, MS85]), where via the autarky argument it can be assumed that a binary

clause is always present, and then splitting on a variable in this binary clauses

eliminates one variable in one branch and two variables in the other (due to

unit-clause elimination). “Traditionally” this is handled by considering the worst

case and using a difference equation fn = fn−1 + fn−2 (n is the number of

variables, while fn is the number of leaves in the search tree). Reasonably we

assume f0 = 0 and f1 = 1, and then (fn)n∈N0
is the Fibonacci sequence with

fn = 1√
5

(

( 1+
√

5
2 )n − ( 1−

√
5

2 )n
)

, and using r : R \ ( 1
2 + Z) → Z for rounding to

the nearest integer, we have fn = r( 1√
5
( 1+

√
5

2 )n) (see Chapter 1 in [CFR05] for

an introduction into these considerations). Whatever the initial values f0, f1 are,

we always have fn = Θ((1+
√

5
2 )n) = O(1.619n). The fundamental approach is

2In fact, the proof of the central “τ -lemma” in [Kul99b] used already the probabilistic inter-
pretation, but [Knu75] was not known to me at this time.
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the Ansatz fn = λn, which leads to the equation λn = λn−1 + λn−2, which is

equivalent to λ2 = λ + 1.

We do not follow the general theory of difference equations any further, since

the initial conditions are of no relevance, and we also want to allow descents in

arbitrary positive real numbers, in order to allow optimisations. The computa-

tion of the root λ from Example 7.2.1 will be generalised in Definition 7.3.2, while

Theorem 7.4.8 yields a general method for computing bounds on tree sizes. Re-

garding our main purpose, the evaluation of branchings, we can show (in Section

7.5) that this generalised λ-calculation is the only “general” way of projecting a

branching tuple to a single number.

As we have already mentioned, the first step is to move from branchings to

branching tuples. For Example 7.2.1 this means extracting the branching tuple

(1, 2) as the essential piece of information. Now an important aspect of the the-

ory developed in this chapter is that branching tuples are not only considered in

isolation, but in connection with the (search) trees (in abstracted form). This

“emancipation” of search trees, which in the form of worst-case analysis based

on recurrence equations are factually suppressed, is also important for practical

applications, as demonstrated in Section 7.8, since it allows to consider the real

computations going on, not just their shadows in the form of worst-case consid-

erations, which must deliver some interpretable bound at the end. And further-

more the study of probability distributions on the leaves of the tree combine the

worst-case upper bounds with the probabilistic considerations from [Knu75] —

the λ-calculation associates, in a canonical way, a probability distribution to the

branches of a branching tuple (see Subsection 7.3.4).

So a main part of the theory is concerned with estimating sizes of trees in

connection with branching tuples associated with them, based on simple prob-

ability considerations. For this task, the above λ-calculation takes on the more

general form of evaluating a branching tuple by a real number. We call such

evaluations evaluation projection, but actually, since the only form of projections

used in this paper are such evaluation projections, we just call them “projections”.

The general study of projections yields the underlying theory to answer questions

like “Why is the product-rule for SAT heuristics better than the sum-rule?” (see

Section 7.6). We begin the development of the theoretical framework by taking

a closer look at branching tuples and the “λ-calculation”.

7.3. Branching tuples and the canonical projection

The subject of this section is the theory of “branching tuples” and their evalua-

tion. The theory shows its full strength when considering branchings of arbitrary

width, which at this time is of importance for theoretical upper bounds (see Sec-

tion 7.7.3) and for constraint satisfaction (see Section 7.10.2), and which might

become more important for practical SAT solving when for example considering

deeper look-aheads at the root of the search tree.



i

i

“p01c07˙heu” — 2008/11/16 — 15:59 — page 212 — #8
i

i

i

i

i

i
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7.3.1. Branching tuples and their operations

One single (potential) branching consisting of k ∈ N branches is evaluated by a

“branching tuple” a of length k, attaching to each branch i a positive real num-

ber ai, which is intended to measure the progress achieved in reducing problem

complexity in this branch (thus the larger ai, the better is branch i).

Definition 7.3.1. BT :=
⋃

k∈N
(R>0)

k denotes the set of branching tuples.

Remarks:

1. Basic measurements for branching tuples are minimum min : BT → R>0,

maximum max : BT → R>0, sum Σ : BT → R>0, and width || : BT → N.

The minimum min(a) of a branching tuple is a “worst-case view”, while

max(a) is a “best-case view”. In general, disregarding the values, the

larger |a|, i.e., the wider the branching is, the worse it is.

2. The set of branching tuples of width k is BT
(k) := {t ∈ BT : |t| = k},

which is a cone, that is for a ∈ BT (k) and λ ∈ R>0 we have λ · t ∈ BT (k),

and for a, b ∈ BT (k) we have a + b ∈ BT (k).

3. Branching tuples of width 1, which do not represent “real branchings” but

“reductions”, are convenient to allow.

4. One could also allow the empty branching tuple as well as the zero branch-

ing tuple (0) (of width 1), but for the sake of simplicity we abstain from

such systematic extensions here.

Concatenation of branching tuples a, b is denoted by “a ; b”, and yields the semi-

group (BT , ;) (the empty branching tuple would be the neutral element here). The

width function || now becomes a homomorphism from (BT , ;) to (N,+). Concate-

nation allows us to define the strict prefix order a < b :⇔ ∃x ∈ BT : a ;x = b

(that is, b is obtained from a by adding further positive numbers to the end of

a) for a, b ∈ BT , while a ⊑ b :⇔ a < b ∨ a = b. A further basic operation for a

branching tuple a of width k is to apply a permutation π ∈ Sk, which we denote

by π ∗ a := (aπ(1), . . . , aπ(k)). Finally we have composition of branching tu-

ples a, b at position i of a, that is, branching b is attached to branch i of a; since

we allow permutation of branching tuples, it suffices to set i = 1 here, and the

resulting composition is denoted by a ! b, defined as

(a1, . . . , ap)!(b1, . . . , bq) := (a1 + b1, . . . , a1 + bq, a2, . . . , ap)

= •
a1

{{xx
xx

xx ap

!!
CC

CC
C

•
b1

}}{{
{{

{ bq

##
FF

FF
FF

. . . •

• . . . •

We obtain a semigroup (BT ,!) (non-commutative; the zero branching tuple

(0) would be the neutral element). It is important to realise that it makes a

difference where to attach the branching b, that is in our setting, the branching

tuples a! b and (π ∗ a)! b are in general qualitatively different:
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(i) if b is better than a, then attaching b to a smaller component of a yields

a better tuple than when attaching it to a larger component;

(ii) if b is worse than a, then attaching b to a smaller component of a yields

a worse tuple than when attaching it to a larger component.

The intuitive reason is that “more balanced tuples are better”, and so in the first

case it is a greater improvement to a when improving its weak parts than when

improving its strong parts, while in the second case making a weak part worse

means a greater impairment than making a strong part worse.

7.3.2. The tau-function

In this section we introduce formally the τ -function as discussed in Example 7.2.1,

and show its main properties.

Definition 7.3.2. Define χk : BT ×R>0 → R>0 by χ(t, x) :=
∑|t|

i=1 x−ti . Observe

that for each t ∈ BT the map χ(t,−) : R>0 → R>0 is strictly decreasing with

χ(t, 1) = |t| ≥ 1 and limx→∞ χ(t, x) = 0. Now τ : BT → R≥1 is defined as the

unique τ(t) := x0 ∈ R≥1 such that χ(t)(x0) = 1 holds.

By definition we have τ(t) ≥ 1, with τ(t) = 1 ⇔ |t| = 1. For k ∈ N we denote

by τk : BT (k) → R≥1 the τ -function restricted to branching tuples of width k.

Example 7.3.1. The computation of τ(1, 2) (recall Example 7.2.1) leads to the

equation x−1 + x−2 = 1, which is equivalent to x2 − x − 1 = 0, which has the

two solutions 1±
√

5
2 , and thus τ(1, 2) = 1+

√
5

2 = 1.6180 . . . Only very few τ -

values can be expressed by analytical formulas, and most of the time numerical

computations have to be used (see Remark 2 to Corollary 7.3.5), so for example

τ(2, 3, 5) = 1.4291 . . .

Simple properties can be proven directly:

Lemma 7.3.1. For every a ∈ BT , k ∈ N and λ ∈ R>0 we have:

1. τ(λ · a) = τ(a)1/λ.

2. τk(~1) = k.

3. τk for k ≥ 2 is strictly decreasing in each component.

4. τk is symmetric, that is, invariant under permutation of branching tuples.

5. τ(a)min(a) ≤ |a| ≤ τ(a)max(a), that is, |a|1/ max(a) ≤ τ(a) ≤ |a|1/ min(a).

6. limλ→0 τ(a; (λ)) = ∞ and limλ→∞ τ(a; (λ)) = τ(a).

The τ -function fulfils powerful convexity properties, from which non-trivial

further properties will follow. A function f : C → R defined on some convex

subset C ⊆ R
k is called “strictly convex” if for all x, y ∈ C and 0 < λ < 1 holds

f(λx+(1−λ)y) < λf(x)+(1−λ)f(y); furthermore f is called “strictly concave”

if −f is strictly convex. By definition τ1 is just the constant function with value

1, and so doesn’t need to be considered here.

Lemma 7.3.2. For k ≥ 2 the function τk is strictly convex.

Lemma 7.3.2 strengthens considerably the quasi-convexity of τk as shown in

Lemma 4.1 of [Epp06]; in Corollary 7.3.5 we shall prove a further strengthening.
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7.3.3. Bounds on the tau-function

Just from being symmetric and strictly convex it follows, that τk(a) for tuples a

with a given fixed sum Σ(a) = s attains its strict minimum for the constant tuple

(with entries s
k ); see Lemma 7.3.3 below for a proof. Thus, using A(t) :=

∑

(t)/|t|
for the arithmetic mean of a branching tuple, we have τ(A(t) · ~1) ≤ τ(t) (with

strict inequality iff t is not constant). In the remainder of this subsection we will

be concerned with further estimations on the τ -functions, and for that purpose

we use the following well-known means (see [HLP99, Bul03]):

1. The arithmetic mean, the geometric mean, and the harmonic mean of

branching tuples t are denoted respectively by A(t) := 1
|t|Σ(t) = 1

|t|
∑|t|

i=1 ti,

G(t) := |t|
√

∏n
i=1 ti and H(t) := |t|/

(
∑n

i=1
1
ti

)

. We recall the well-known

fundamental inequality between these means: H(t) ≤ G(t) ≤ A(t) (where

strict inequalities hold iff t is not constant).

2. More generally we have the power means for α ∈ R given by Mα(t) :=
(

1
|t|

∑|t|
i=1 tαi

)1/α
for α /∈ {−∞, 0,+∞}, while we set M−∞(t) := min(t),

M0(t) := G(t) and M+∞(t) := max(t). By definition we have M−1(t) =

H(t) and M1(t) = A(t). In generalisation of the above fundamental in-

equality we have for α, α′ ∈ R with α < α′ the inequality Mα(t) ≤ Mα′(t),

which is strict iff t is not constant.

We want to establish a variation of the τ -function as a “mean”, comparable to

the above means. In the literature there are no standard axiomatic notions about

“means”, only collections of relevant properties, and we condense the relevant

notion here as follows:

Definition 7.3.3. Consider k ∈ N. A mean is a map M : BT (k) → R>0

which is continuous, strictly monotonic increasing in each coordinate, symmetric

(i.e., invariant under permutation of the arguments) and “consistent”, that is,

min(a) ≤ M(a) ≤ max(a) for a ∈ BT (k). A mean M is homogeneous if M is

positive homogeneous, i.e., for λ ∈ R>0 and a ∈ BT (k) we have M(λ·a) = λ·M(a).

All power means are homogeneous means. Yet k-ary means M are only

defined for tuples of positive real numbers a ∈ R
k
>0, and we extend this as follows

to allow arguments 0 or +∞, using the extended real line R = R ∪ {±∞}. We

say that M is defined for a ∈ R
k

≥0 (allowing positions to be 0 or +∞) if the

limit lima′→a,a′∈Rk
>0

M(a′) exists in R, and we denote this limit by M(a) (if the

limit exists, then it is unique). Power means Mλ(a) for λ 6= 0 are defined for all

a ∈ R
k

≥0, while M0(a) = G(a) is defined iff there are no indices i, j with ai = 0

and aj = ∞.

Definition 7.3.4. Consider a mean M : BT (k) → R>0. We say that M is ∞-

dominated resp. 0-dominated if for every a ∈ R
k

≥0, such that an index i with

ai = ∞ resp. ai = 0 exists, M(a) is defined with M(a) = ∞ resp. M(a) = 0. On

the other hand, M ignores ∞ resp. ignores 0 if M(a; (∞)) resp. M(a; (0)) is

defined iff M(a) is defined with M(a; (∞)) = M(a) resp. M(a; (0)) = M(a).
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Power means Mλ with λ > 0 are ∞-dominated and ignore 0, while for λ < 0

they are 0-dominated and ignore ∞. The borderline case M0 = G is ∞-dominated

as well as 0-dominated if only tuples are considered for which G is defined (and

thus we do not have to evaluate “0 · ∞”).

Another important properties of means is convexity resp. concavity. Power

means Mα with α > 1 are strictly convex, while power means Mα with α < 1 are

strictly concave; the borderline case M1 = A is linear (convex and concave).

Lemma 7.3.3. For every concave mean M we have M ≤ A.

Proof. By Jensen’s inequality (see [HUL04]) we have M(a) =
∑

π∈Sk

1
k!M(π∗a) ≤

M(
∑

π∈Sk

1
k! · (π ∗ a)) = M(A(a) ·~1) = A(a).

We now consider the means associated with the τ -function. In the following

log = loge denotes the natural logarithm (to base e).

Definition 7.3.5. For k ≥ 2 the map Tk : BT (k) → R>0 is defined by

Tk(t) :=
log(k)

log(τ(t))
= logτ(t)(k).

Note that while a smaller τ(t) indicates a better t, for the τ -mean T the

larger Tk(t) is the better t is, but this only holds for fixed k, and due to the

normalisation the τ -means of tuples of different lengths cannot be compared.

Theorem 7.3.4. Consider k ≥ 2.

1. Tk is a strictly concave homogeneous mean.

2. We have M2−k(t) ≤ Tk(t) ≤ A(t), with equalities iff t is constant. Espe-

cially we have G(t) ≤ T2(t) ≤ A(t).

3. For k ≥ 3 it is Tk 0-dominated and ∞-ignoring, while T2 is 0-dominated as

well as ∞-dominated, whence only defined for t ∈ R
2

≥0 \ {(0, inf), (inf, 0)}.

In general we have that if a positive function f : C → R>0 is “reciprocal-

concave”, that is, 1/f is concave, then f is log-convex (but not vice versa), that

is, log ◦f is convex. Furthermore, if f is log-convex then f is convex (but not vice

versa).

Corollary 7.3.5. Consider k ≥ 2.

1. τk is strictly reciprocal-log-concave for k ≥ 2, that is, the map t ∈ BT (k) 7→
1/ log(τ(t)) ∈ R>0 is strictly concave. Thus τ is strictly log-log-convex.

2. For t ∈ BT (k) we have τ(A(t) · ~1) = k1/ A(t) ≤ τ(t) ≤ k1/ M2−k(t) =

τ(M2−k(t) ·~1).

Remarks:

1. Part 2 says that replacing all entries in a branching tuple by the arith-

metic mean of the branching tuple improves (decreases) the τ -value, while

replacing all entries by the geometric mean (k = 2) resp. harmonic mean
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(k = 3) impairs (increases) the τ -value. The case k = 2 of this inequality

was shown in [KL98] (Lemma 5.6). For the use of the lower and upper

bounds in heuristics see Subsection 7.6.

2. Computation of τ(t) can only be accomplished numerically (except of a few

special cases), and a suitable method is the Newton-method (for computing

the root of χ(t)(x) − 1), where using the lower bound |t|1/ A(t) as initial

value performs very well (guaranteeing monotonic convergence to τ(t)).

7.3.4. Associating probability distributions with branching tuples

Definition 7.3.6. Given a branching tuple a = (a1, . . . , ak), the branching tuple

τp(a) ∈ BT (k) is defined by τp(a)i := τ(a)−ai for i ∈ {1, . . . , k}.

Remarks:

1. By definition we have Σ(τp(a)) = 1, and thus τp(a) represents a probabil-

ity distribution (on {1, . . . , k}).
2. For λ ∈ R>0 we have τp(λ · a) = τp(a), and thus τp(a) only depends on

the relative sizes of the entries ai, and not on their absolute sizes.

3. For fixed k we have the map τp
k : BT (k) → int(σk−1) ⊂ BT (k) from the set

of branching tuples (a1, . . . , ak) of length k to the interior of the (k − 1)-

dimensional standard simplex σk−1, that is, to the set of all branching

tuples (p1, . . . , pk) ∈ BT (k) with p1 + · · · + pk = 1. We have already seen

that τp
k (λ ·a) = τp

k (a) holds. Furthermore τp
k is surjective, i.e., every prob-

ability distribution of size k with only nonzero probabilities is obtained,

with (τp
k )−1((p1, . . . , pk)) = R>0 · (− log(p1), . . . ,− log(pk)).

7.4. Estimating tree sizes

Now we turn to the main application of branching tuples and the τ -function, the

estimation of tree sizes. We consider rooted trees (T, r), where T is an acyclic

connected (undirected) graph and r, the root, is a distinguished vertex of T . Since

we are considering only rooted trees here, we speak in the sequel just of “trees” T

with root rt(T ) and vertex set V (T ). We use #nds(T ) := |V (T )| for the number

of nodes of T , while #lvs(T ) := |lvs(T )| denotes the number of leaves of T .

7.4.1. Notions for trees

For a node v ∈ V (T ) let dT (v) be the depth of v (the length of the path from

the root to v), and for i ∈ {0, . . . ,d(v)} let T (i, v) be the vertex with depth i on

the path from the root to v (so that T (0, v) = rt(T ) and T (d(v), v) = v). For a

node v ∈ V (T ) we denote by Tv the subtree of T with root v. Before turning to

our main subject, measuring the size of trees, some basic strategic ideas should

be pointed out:

• Trees are considered as “static”, that is, as given, not as evolving; the

main advantage of this position is that it enables us to consider the “real”
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backtracking trees, in contrast to the standard method of ignoring the real

object and only to consider approximations given by recursion equations.

• The number of leaves is a measure easier to handle than the number of

nodes: When combining trees under a new root, the number of leaves

behaves additively, while the number of nodes is bigger by one node (the

new root) than the sum. Reductions, which correspond to nodes with only

a single successor, are being ignored in this way. For binary trees (every

inner node as exactly two children) we have #nds(T ) = 2#lvs(T )−1. And

finally, heuristics in a SAT solver aim at reducing the number of conflicts

found, that is, the number of leaves.

• All leaves are treated equal (again, this corresponds to the point of view of

the heuristics).

7.4.2. Adorning trees with probability distributions

Consider a finite probability space (Ω, P ), i.e., a finite set Ω of “outcomes” to-

gether with a probability assignment P : Ω → [0, 1] such that
∑

ω∈Ω P (ω) = 1; we

assume furthermore that no element has zero probability (∀ω ∈ Ω : P (ω) > 0).

The random variable P−1 on the probability space (Ω, P ) assigns to every out-

come ω the value P (ω)−1, and a trivial calculation shows that the expected value

of P is the number of outcomes:

E(P−1) =
∑

ω∈Ω

P (ω)P (ω)−1 = |Ω|. (7.1)

So the random variable P−1 associates to every outcome ω a guess P−1(ω) on

the (total) number of outcomes, and the expected value of these guesses is the

true total number of all outcomes. Thus, via sampling of P−1 we obtain an

estimation on |Ω|. In the general context this seems absurd, since the probabilities

of outcomes are normally not given a priori, however in our application, where

the outcomes of the probability experiment are the leaves of the search tree, we

have natural ways at hand to calculate for each outcome its probability. We

remark that for r ∈ R≥1 from (7.1) we get for the r-th moment the lower bound

E((P−1)r) = E((P−r)) ≥ |Ω|r (by Jensen’s inequality).

Definition 7.4.1. For trees T we consider tree probability distributions P, which

assign to every edge (v, w) in T a probability P((v, w)) ∈ [0, 1] such that for all

inner nodes v we have
∑

w∈dsT (v) P((v, w)) = 1, that is, the sum of outgoing

probabilities is 1; we assume furthermore, that no edge gets a zero probability.

We obtain the associated probability space (ΩT ,P), where ΩT := lvs(T ), that is,

the outcomes are the leaves of T , which have probability

P(v) :=

d(v)−1
∏

i=0

P((T (i, v), T (i + 1, v))). (7.2)

The edge-probabilities being non-zero just means that no outcome in this

probability space has zero probability (which would mean it would be ignored).
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Equation (7.2) makes sense for any vertex v ∈ V (T ), and P(v) is then to be

interpreted as the event that an outcome is a leaf in the subtree of T with root v

(that is, P(v) =
∑

w∈lvs(Tv) PT (w)); however we emphasise that the values P(v)

for inner nodes v are only auxiliary values. From (7.1) we obtain:

Lemma 7.4.1. For every finite rooted tree T and every tree probability distri-

bution P for T we have for the associated probability space ΩT and the random

variable P−1 : ΩT → ]0, 1]:

min P−1 = min
v∈lvs(T )

P(v)−1 ≤ #lvs(T ) = E(P−1) ≤ max
v∈lvs(T )

P(v)−1 = max P−1 .

Corollary 7.4.2. Under the assumptions of Lemma 7.4.1 the following assertions

are equivalent:

1. min P−1 = #lvs(T ).

2. #lvs(T ) = max P−1.

3. P is a uniform distribution (all leaves have the same probability).

Lemma 7.4.1 opens up the following possibilities for estimating the size of a

tree T , given a tree probability distribution P:

1. Upper bounding max P−1 we obtain an upper bound on #lvs(T ), while

lower bounding min P−1 we obtain a lower bound on #lvs(T ).

2. Estimating E(P−1) by sampling we obtain an estimation of #lvs(T ).

By Corollary 7.4.2, in each case a tree probability distribution P yielding a

uniform distribution p on the leaves is the most desirable distribution (the lower

and upper bounds coincide with the true value, and only one path needs to be

sampled). It is easy to see that each tree has exactly one such “optimal tree

probability distribution”:

Lemma 7.4.3. Every finite rooted tree T has exactly one tree probability distri-

bution P which induces a uniform probability distribution P on the leaves, and

this canonical tree probability distribution CPT is given by

CPT ((v, w)) =
#lvs(Tw)

#lvs(Tv)

for v ∈ V (T ) and w ∈ dsT (v).

The canonical tree probability distribution CPTv
on a subtree Tv of T (for

v ∈ V (T )) is simply obtained by restricting CPT to the edges of Tv (without

change).

7.4.3. The variance of the estimation of the number of leaves

If the leaf probabilities vary strongly, then the variance of the random variable P−1

will be very high, and a large number of samples is needed to obtain a reasonable

estimate on the number of leaves. So we should consider more closely the variance
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Var(P−1) = E((P−1 −#lvs(T ))2) = E(P−2) − #lvs(T )2 ∈ R≥0 of the random

variable P−1. By definition, the variance is 0 if and only if the probability distri-

bution is uniform, that is, iff P is the canonical tree probability distribution on T .

To estimate Var(P−1) one needs to estimate E(P−2), that is, the second moment of

P−1. By definition we have E(P−2) =
∑

v∈lvs(T ) P(v)·P(v)−2 =
∑

v∈lvs(T ) P(v)−1.

So E(P−2) is just the sum over all estimations on #lvs(T ) we obtain from the

probability distribution P. Somewhat more efficiently, we can calculate all mo-

ments of P−1 recursively (using a number of arithmetical operations which is

linear in #nds(T )) as follows, where we use PTv
for the restriction of the tree

probability distribution P = PT to subtree Tv (unchanged), while PTv
is the

probability distribution induced by PTv
(which is not the restriction of PT ; for

w ∈ lvs(Tv) we have PTv
(w) = PT (v)−1 · PT (w)). Trivial calculations show:

Lemma 7.4.4. For a finite rooted tree T , a tree probability distribution P on T

and r ∈ R≥0 we can recursively compute the r-th moment E(P−r) of P−1 by

• If T is trivial (i.e., #nds(T ) = 1), then we have E(P−r
T ) = 1.

• Otherwise E(P−r
T ) =

∑

v∈ds(rt(T )) PT ((rt(T ), v))1−r · E(P−r
Tv

).

Following [Knu75] (Theorem 3), we give an estimation on the variance of P−1

if the derived transition probabilities on the edges are within a factor α of the

canonical tree probability distribution (recall Lemma 7.4.3).

Lemma 7.4.5. For a finite rooted tree T and a tree probability distribution P

on T , which fulfils P−1
T ≤ α · CP−1

T for some α ∈ R≥1, we have E(P−r
T ) ≤

α(r−1)·ht(T ) · #lvs(T )r for all r ∈ R≥1.

Corollary 7.4.6. Under the same assumptions as in Lemma 7.4.5 we have

Var(P−1
T ) ≤ (αht(T ) − 1) · #lvs(T )2.

All the considerations of this section can be generalised to the case, where we

also take inner nodes of the tree into account, and where we have an arbitrary

cost function which assigns to every node of the tree its cost (in this section we

considered the cost function which assigns every leaf the cost 1, while every inner

node gets assigned cost 0). See [Kul08a] for details.

7.4.4. The tau-method

In the previous subsection we developed a method of estimating tree sizes, assum-

ing a given tree probability distribution which assigns to every edge a transition

probability. Now in this subsection we discuss how to obtain such transition prob-

abilities via the help of “distances” and “measures”. The basic idea is to attach a

distance d((u, v)) to the edge (u, v), measuring how much “progress” was achieved

via the transition from u to v, and where a standard method for obtaining such

distances is to use a measure µ of “complexity” via d((u, v)) := µ(u) − µ(v).
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Definition 7.4.2. A distance d on a finite rooted tree T is a map d : E(T ) → R>0

which assigns to every edge (v, w) in T a positive real number, while a measure is

a map µ : V (T ) → R such that ∆µ is a distance, where ∆µ((v, w)) := µ(v)−µ(w).

For a distance d we define the measures min Σd and max Σd on T , which assign

to every vertex v ∈ V (T ) the minimal resp. maximal sum of d-distances over all

paths from v to some leave.

The τ -function yields a canonical method to associate a tree probability dis-

tribution to a distance on a tree as follows.

Definition 7.4.3. Consider a rooted tree T together with a distance d. For an

inner node v of T we obtain an associated branching tuple d(v) modulo permuta-

tion; assuming that T is ordered, i.e., we have a sorting dsT (v) = {v1, . . . , vk}, we

obtain a concrete branching tuple d(v) := (d(v, v1), . . . , d(v, vk)). The associated

tree probability distribution Pd is given by

Pd((v, vi)) := τp(d(v))i

(recall Definition 7.3.6).

By definition we have for λ ∈ R>0 that Pλ·d = Pd. By Remark 3 to Definition

7.3.6 for every tree probability distribution P for T there exist distances d on T

with P = Pd, and d is unique up to scaling of the branching tuples at each inner

node (but each inner node can be scaled differently).

Given a distance d on a tree T , in order to apply Lemma 7.4.1 we need to

estimate min P−1
d and max P−1

d , where Pd is the probability distribution induced

by Pd on the leaves of T according to Definition 7.4.1.

Definition 7.4.4. For a rooted tree (T, r) with a distance d let min τ(d) :=

+∞ and max τ(d) := 1 in case T is trivial (consists just of r), while otherwise

min τ(d) := minv∈V (T )\lvs(T ) τ(d(v)) and max τ(d) := maxv∈V (T )\lvs(T ) τ(d(v)).

Lemma 7.4.7. Consider a rooted tree (T, r) together with a distance d. For the

induced probability distribution Pd on the leaves of T we have:

1. (min τ(d))min Σd(r) ≤ min P−1
d .

2. max P−1
d ≤ (max τ(d))max Σd(r).

Proof. We prove Part 1 (the proof for Part 2 is analogous). If T is trivial then

the assertion is trivial, so assume that T is non-trivial. Let τ0 := min τ(d).

min P−1
d = min

v∈lvs(T )
Pd(v)−1 = min

v∈lvs(T )

d(v)−1
∏

i=0

Pd(T (i, v), T (i + 1, v))−1 =

min
v∈lvs(T )

d(v)−1
∏

i=0

τ(d(T (i, v)))d(T (i,v),T (i+1,v)) ≤

min
v∈lvs(T )

d(v)−1
∏

i=0

τ
d(T (i,v),T (i+1,v))
0 = min

v∈lvs(T )
τ

Pd(v)−1
i=0 d(T (i,v),T (i+1,v))

0 = τ
min Σd(r)
0 .
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Lemma 7.4.1 together with Lemma 7.4.7 yields immediately the following

fundamental method for estimating tree sizes.

Theorem 7.4.8. Consider a rooted tree (T, r). For a distance d on (T, r) we

have

(min τ(d))min Σd(r) ≤ #lvs(T ) ≤ (max τ(d))max Σd(r).

And for a measure µ on (T, r) which is 0 on the leaves we have

(min τ(∆µ))µ(r) ≤ #lvs(T ) ≤ (max τ(∆µ))µ(r).

Remarks:

1. So upper bounds on tree sizes are obtained by Theorem 7.4.8 through

• upper bounds on the τ -values on the branching tuples at each inner

node of the tree

• and upper bounds on the maximal sum of distances amongst paths

in the tree,

where the latter can be obtained via the root-measure in case the distances

are measure-differences.

2. The general method of Theorem 7.4.8 was introduced by [Kul99b] (Lemma

8.2 there; see Section 7.7.3 here for more on the topic of theoretical upper

bounds), while in [KL97, KL98] one finds direct (inductive) proofs.

The ideal measure on a tree makes the bounds from Theorem 7.4.8 becoming

equal:

Lemma 7.4.9. Consider a non-trivial rooted tree (T, r). Then the following

assertions are equivalent for a measure µ on (T, r) which is 0 on the leaves:

1. There exists λ ∈ R>0 with ∀ v ∈ V (T ) : µ = λ · log(#lvs(Tv)).

2. (min τ(∆µ))µ(r) = #lvs(T ).

3. (max τ(∆µ))µ(r) = #lvs(T ).

4. min τ(∆µ) = max τ(∆µ).

If one of these (equivalent) conditions are fulfilled then P∆µ = CPT (the canonical

tree probability distribution; recall Lemma 7.4.3).

So a good distance d on a rooted tree T has to achieve two goals:

1. Locally, for each inner node v with direct successors ds(v) = {v1, . . . , vk}
the relative proportions of the distances d(v, vi) must mirror the sizes of

the subtrees hanging at vi (the larger the subtree the smaller the distance).

2. Globally, the scaling of the different τ -values at inner nodes must be sim-

ilar.

As we have seen in Lemma 7.4.9, if the second condition is fulfilled perfectly, then

also the first condition is fulfilled (perfectly), while the other direction does not

hold (the first condition can be achieved with arbitrary scaling of single branching
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tuples). The problem of constructing good distance functions (from a general

point of view) is further discussed in Section 7.8.

After having seen that the τ -function can be put to good use, in the following

section we show that at least the linear quasi-order induced on branching tuples

by the τ -function (the smaller the τ -value the “better” the tuple) follows from

very fundamental requirements on the evaluation of branchings.

7.5. Axiomatising the canonical order on branching tuples

On BT we have a natural linear quasi-order given by a ≤ b ⇔ τ(a) ≤ τ(b) for

a, b ∈ BT . Here we show how this order follows from simple intuitive axioms

(extending [Kul98]).

Definition 7.5.1. A relation ≤ on BT is called a canonical branching order

if it fulfils the six properties (TQO), (CMP), (P), (W), (M) and (Con), which are

the following conditions (for all branching tuples a, b, c and all permutations π),

where the induced equivalence relation a ∼ b :⇔ a ≤ b ∧ b ≤ a and the induced

strict order a < b :⇔ a ≤ b ∧ a 6∼ b are used. First the five elementary conditions

are stated:

(TQO) (“Total Quasi-order”) ≤ is a total quasi-order on BT , that is, a ≤ a,

a ≤ b ∧ b ≤ c ⇒ a ≤ c and a ≤ b ∨ b ≤ a for all branching tuples a, b, c.

(CMP) (“Composition”) a ≤ b =⇒ (a ≤ a! b ≤ b) ∧ (a ≤ b! a ≤ b).

(P) (“Permutation”) π ∗ a ∼ a.

(W) (“Widening”) a < b ⇒ a < b.

(M) (“Monotonicity”) If k := |a| = |b| ≥ 2, ∀ i ∈ {1, . . . , k} : ai ≤ bi and

∃ i ∈ {1, . . . , k} : ai > bi, then a < b.

Now for a ∈ BT let γa : R>0 → BT be defined by γa(x) := a ;(x) (“left transla-

tion”). So (M) just expresses that for a ∈ BT the map γa is strictly decreasing.

And extend γa : R>0 → BT to γa : R>0 → BT by γ(+∞) := a. The remaining

condition is:

(Con) (“Continuity”) For a ∈ BT the map γa : R>0 → BT is continuous with

regard to the natural topology on R>0 and the order topology on BT , i.e.:

(Con1) For x ∈ R>0 and b, c ∈ BT with b < γa(x) < c there is δ ∈ R>0

such that for x′ ∈ R>0 with |x − x′| < δ we have b < γa(x′) < c.

(Con2) For b ∈ BT with b > a there is x0 ∈ R>0 such that for x′ ∈ R>x0

we have b > γa(x′).

Remarks:

1. The intuitive meaning of “a ≤ b” is that “in general”, that is, “if nothing

else is known”, branching tuple a is at least as good as b (doesn’t lead to

larger branching trees). The main result of this section is that actually

there is exactly one canonical branching order.
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2. (TQO) expresses the comparability of branching tuples; the order does

not fulfil antisymmetry (i.e., a ≤ b ∧ b ≤ a ⇒ a = b), since for example,

as stated in (P), permutation doesn’t change the value of a branching,

and via (CMP) also composition of a branching tuple with itself doesn’t

change its value.

3. (CMP) states that if a is at least as good as b, then a! b as well as b! a

are “compromises”, improving b and impairing a.

4. (P) says permutation does not change anything essential.

5. (W) requires that adding branches to a branching impairs the branching.

6. (M) states that increasing some component of a branching tuple of width

at least two strictly improves the branching tuple.

7. Finally (Con) states that sufficiently small changes in one component yield

only small changes in the “value” of the tuple.

Lemma 7.5.1. The linear quasi-order on BT given by a ≤ b ⇔ τ(a) ≤ τ(b) for

a, b ∈ BT is a canonical branching order.

Lemma 7.5.2. Consider a canonical branching order ≤ on BT . Then for a, b ∈
BT with τ(a) < τ(b) we have a < b.

Theorem 7.5.3. There is exactly one canonical branching order on branching

tuples, given by a ≤ b ⇔ τ(a) ≤ τ(b) for all a, b ∈ BT .

Proof. Consider a canonical branching order ≤. We have to show that for all

a, b ∈ BT we have a ≤ b ⇔ τ(a) ≤ τ(b). By Lemma 7.5.1 we know the direction

from right to left. So assume that ≤ is a canonical branching order, and consider

a, b ∈ BT . If a ≤ b holds, then τ(a) > τ(b) by Lemma 7.5.2 would imply a > b

contradicting the assumption. So assume now (finally) τ(a) ≤ τ(b), and we have

to show that a ≤ b holds. If a > b would be the case, then by (Con1) there exists

ε ∈ R>0 with a!(ε) > b, however we have τ(a!(ε)) < τ(a) ≤ τ(b), and thus by

Lemma 7.5.2 it would hold a!(ε) < b.

For branching tuples with rational entries the canonical branching order can

be decided in polynomial time (in the binary representation) by using the decid-

ability of the first-order theory of the real numbers ([Ren92]). The approach of

this section can be generalised by considering only tuples of length at most k resp.

of length equal k, and formulating the axioms in such a way that all occurring

branching tuples are in the restricted set. In the light of the questions arising

in the subsequent Section 7.6 about projections for branching tuples of restricted

width such generalisations seem to be worth to study.

7.6. Alternative projections for restricted branching width

The argumentation of Subsection 7.5 depends on considering branching tuples

of arbitrary length. The strength of the τ -function is that it imposes a consis-

tent scaling for tuples of different sizes, and Theorem 7.5.3 shows that the order

induced by the τ -function (the canonical order) is the only reasonable order if
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branching tuples of arbitrary width are considered. Now if we consider only

branching tuples of some constant length, then other choices are possible. Prac-

tical experience has shown that for a binary branching tuple (a1, a2) maximising

the product a1 ·a2 yields good results, and this projection is universally used now

(ignoring tie-breaking aspects here), while maximising the sum a1 + a2 has been

shown by all experiments to perform badly. We are now in a position to give

theoretically founded explanations:

1. The general rule is that τ(a1, a2) should be minimised.

2. If computation of τ(a1, a2) is considered to be too expensive, then the

approximations from Corollary 1, Part 2 could be used, which amount

here to either maximise the arithmetic mean A(a1, a2) or to maximise

the geometric mean G(a1, a2). Now maximising A(a1, a2) is equivalent to

maximise the sum a1 +a2, while maximising the geometric mean G(a1, a2)

is equivalent to maximising the product a1 · a2.

3. So maximising the sum a1 + a2 means to minimise a lower bound on the

τ -value, while maximising the product a1 · a2 means minimising an upper

bound on the τ -value — it appears now that the second choice is more

meaningful, since it amounts to minimise an upper bound on the tree size,

while minimising a lower bound on the tree size leads to nowhere.

A more quantitative explanation is given by the following lemma, which shows

that the product yields a better approximation to the τ -mean than the sum.

Lemma 7.6.1. We have A(a1, a2) − T(a1, a2) ≥ T(a1, a2) − G(a1, a2) for all

a1, a2 ∈ R>0, with equality iff a1 = a2 (and in this case both sides are zero).

Especially for branching tuples with more than two entries the τ -function

appears as the canonical choice; if approximations are sought then the product

(corresponding to the geometrical mean) can no longer be used, but the general

upper bound from Corollary 1, Part 2 is a candidate.3 It is not clear whether

for branching tuples of constant width the canonical order is always the superior

choice (and using for example the product-rule for binary branches is just a rea-

sonable approximation), or whether there might be special (but still “general”)

circumstances under which other orders are preferable. Considering again bi-

nary branchings, for the canonical order the branching tuples (1, 5) and (2, 3) are

equivalent, but they are distinguished by the product rule which favours (2, 3).

This is in fact a general property of the product rule (which, as already said, is

only sensible for binary tuples) that it favours more symmetric tuples (compared

to the canonical order).

3The unsuitability of the product for branching widths at least 3 can be seen for example by
the fact that the product is ∞-dominated (i.e., if one component goes to infinity, so does the
product), while the τ -function is ∞-ignorant — if one branch is very good, then this does not
mean that the whole branching is very good, but only that this branch doesn’t contribute to
the overall cost.
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7.7. How to select distances and measures

After having laid the foundations, in this section we consider now the basic

“branching schemes” used by such (practical) SAT solvers employing branching

algorithms. The essential ingredient of theses “schemes” (made more precise in

Subsection 7.7.2) is the underlying distance function, however obviously the whole

of the algorithm is important, and the aspects related to the branching heuristics

are condensed in these “schemes”.4 The main purpose is to give an overview

on the relevant measures µ(F ) of “absolute problem complexity” or of distances

d(F, F ′) as measurements of “relative problem complexity”, as core ingredients

of the heuristical melange found in a SAT solver. This is intertwined with es-

pecially the reduction process, and we discuss this aspect further in Subsection

7.7.2. A potential source for future heuristics is the literature on worst-case upper

bounds, and we make some comments in Subsection 7.7.3. Then in Subsection

7.7.4 we give a “rational reconstruction” of the branching schemes currently used

in practice, which actually all can be explained as “maximising the number of

new clauses” — this branching rule in its pure form was implemented by the

OKsolver-2002 (see [Kul02]), and is presented in Subsection 7.7.4.1, while the

historical development in practical SAT solving leading to this rule is discussed

in Subsection 7.7.4.2. For background on “look-ahead SAT solvers” in general see

Chapter 5 of this handbook.

7.7.1. Some basic notations for clause-sets

Applying the abstract ideas and notions to concrete problems, now we need to

consider more closely actual problem instances. In the sequel we use the following

notations for (multi-)clause-sets F :

• n(F ) := |var(F )| is the number of variables (actually occurring in F ).

• c(F ) := |F | is the number of clauses, and more specifically ck(F ) for k ∈ N0

is the number of clauses of length (exactly) k.

• ℓ(F ) =
∑

C∈F |C| =
∑

k∈N0
ck(F ) · k is the number of literal occurrences.

• The maximal clause-length is denoted by rank(F ).

• For a partial assignment ϕ the result of applying ϕ to F is denoted by

ϕ ∗F (eliminating satisfied clauses, and removing falsified literals from the

remaining clauses).

• The partial assignment (just) assigning value ε to variable v is denoted by

〈v → ε〉.
• rk(F ) denotes generalised unit-clause propagation (see [Kul99a]), i.e., r0

just reduces F to {⊥} iff ⊥ ∈ F , r1 is unit-clause propagation, r2 is failed-

literal propagation etc.

4As remarked earlier, yet heuristics for conflict-driven solvers are mainly “purely heuristical”,
and no theoretical foundation exists, whence we do not consider them here. Some general
remarks on heuristics in this context are in [Kul08b]. From a theoretical angle, in [BKS04]
guidance by structure has been considered (on an example), while [BKD+04] considered the
relation between tree decompositions and learning.
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7.7.2. On the notion of “look-ahead”

An important concept in this context is the notion of “look-ahead”, which is used

in the literature in different ways, and so needs some discussion. A reduction

is typically a function r(F ) for problem instances F , computable in polynomial

time such that problem instance r(F ) is satisfiability equivalent to F . Now for

example in [Fre95] “look-ahead” is used mainly instead of “reduction” (actually

framed in the language of constraint satisfaction, as “constraint propagator”), and

this reduction process can actually be integrated into the heuristics for choosing

the branching variable. This integration of reduction and heuristics seems to be

rather popular amongst current look-ahead architectures, however in this article,

with its foundational emphasis, we need clean and precise distinctions, and so we

use the following architecture of a recursive backtracking SAT solver:

1. The input is a problem instance F .

2. Via the reduction r the instance is reduced to F ′ := r(F ), including at

least unit-clause propagation (iterated elimination of (all) unit-clauses).

3. If now F ′ is trivially satisfiable or unsatisfiable, as established by the

immediate-decision oracle, then the result is returned (more complex tests

for satisfiability or unsatisfiability can be integrated into the reduction).

4. The purpose of the branching scheme (for standard SAT solvers) is now

to select a branching variable v ∈ var(F ′) such that branching using the

two branches
F ′

wwoooooooo

''OOOOOOOO

r(〈v → 0〉 ∗ F ′) r(〈v → 1〉 ∗ F ′)

yields the “fastest” decision (applying the algorithm recursively to the

branches). Note that from this point of view branching considers only

reduced instances. For sequential execution the ordering of the branches

is important, and is accomplished by the branching ordering heuristics.

The tasks of the branching scheme and the branching ordering heuristics

are accomplished as follows:

(a) For each variable v ∈ var(F ′) and value ε ∈ {0, 1} the look-ahead

reduction r′ computes an approximation of r(〈v → ε〉 ∗ F ′) as F ε
v :=

r′(〈v → ε〉 ∗ F ′), where r′ is a weaker form of r.

(b) Via the distance function d for each variable v the branching tuple

tv := (d(F ′, F 0
v ), d(F ′, F 1

v )) ∈ R
2
>0 is computed.

(c) Via the projection ρ each branching tuple tv is projected to a single

real number ρ(tv), and the branching scheme selects a variable v0 with

minimal ρ(tv0
) (possibly using additional distance functions to break

ties).

(d) The branching order finally is established by a satisfiability estimator

P (F ε
v0

), a function which computes for each branch F ε
v0

an “approxi-

mation” of the chance of being satisfiable, and the branch with higher

P -value is chosen first.
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In order to separate reduction and branching scheme we require here that no

reduction takes place in Step 4 (where the branching scheme performs its work),

that is, no F ε
v is trivially decidable (according to Step 3), and thus r must ac-

tually be stronger than r′. Often r is the “look-ahead version” of r′, that is, if

r′ is the identity, then r is just unit-clause propagation, and if r′ is unit-clause

propagation then r is failed-literal elimination; in general, if r′ = rk then often

r = rk+1. In practice typically the separation between reduction and heuristic is

blurred, and the choice of the “branching heuristics” involves a mixture of choices

for reduction, look-ahead reduction, distances, projections and satisfiability esti-

mator, typically applied in an entangled way to improve efficiency, but for the

correct understanding the above distinctions seem essential.

7.7.3. Branching schemes in theoretical algorithms

[Kul92, Kul99b] introduced the now dominant technique for proving worst-case

upper bounds on NP-hard problems, called “measure-and-conquer” in [FGK05],

which is based on Theorem 7.4.8 and the use of an appropriate “interesting”

distance d or measure µ. For a recent work on upper bounds and measures see

[Wah07], and Chapter 12 of this handbook for worst-case upper bounds in general,

while in this chapter we only consider the particular strand of work in this area

which influenced heuristics for SAT solving.

In [KL97, KL98] the basic measures n, c, ℓ for SAT decision have been con-

sidered for the first time systematically. [Kul99b], motivated by [Sch92], based

his analysis on the (measure-based) distance d2 = ∆mk = ∆n − α∆zk, where zk

is a capped version of c2 (in order to make c2 and n comparable), and α ∈ R>0 is

to be optimised. Note that a decrease in n is favourable, while an increase in the

number of binary clauses is favourable. An important refinement then replaces

the distance d2 by the distance d3, which takes (depending on the parameter k)

a fixed amount of new binary clauses into account (as improvement), while “ig-

noring” the number of eliminated binary clauses. Starting from this measure, by

extensive experimentation the heuristic for the OKsolver-2002 was empirically

“derived” ([Kul98]), arriving for 3-CNF at a distance function without magic

numbers, which is just the number of new binary clauses.

That the distance ∆n vanished finally in this development can be motivated

as follows: ∆n was used in [Kul99b] since an upper bound in the measure n was

to be derived. But “heuristical” versions, which just care about making the tree

smaller, without caring about accompanying (interpretable) upper bounds, can

remove the factor n which imposed, due to the positivity requirement d3 > 0, a

cap on the number k of binary clauses to be taken into account — now arbitrary

amounts of new binary clauses count! This branching scheme, generalised to

arbitrary CNF will be further discussed in Subsection 7.7.4.1. It seems to be at

this time the strongest “pure” heuristics known (for look-ahead solver, and used

as basis for further heuristical extensions). And, by “magic coincidence”, its basic

content is closely related to the emerging heuristics from practical SAT solving,

as explained in Subsection 7.7.4.2.
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7.7.4. Branching schemes in practical algorithms

Now we turn to branching schemes as proposed (and used) in the realm of “prac-

tical SAT solving”. First a few comments on very simple underlying distances,

which might be useful for comparisons (or perhaps in the context of optimising

combinations of distances, as considered in Section 7.8):

1. The trivial choice, an “arbitrary variable”, is reflected by choosing a con-

stant distance function. Here the “tie-braking rule” becomes decisive, and

choosing a random variable, which for random instances is the same as

choosing the first variable in a fixed (instance-independent) order, is con-

siderably worse than choosing the first occurring variable in the clause-set,

which for random instances in the average will choose the variable occur-

ring most often.

2. ∆n is perhaps the most basic non-trivial choice. This distance gets stronger

with look-ahead, but for practical SAT solving it never played a role yet

(different from the theoretical upper bounds as mentioned in Subsection

7.7.3). ∆c and ∆ℓ are more sensitive to the input5, but still these dis-

tances appear as not suitable for practical SAT solving in general. Likely

the basic problem with these measures is that they do not provide any

guidance towards increased efficiency of the reduction process (unit-clause

propagation and beyond).

We present the branching scheme of the OKsolver-2002 in Subsection 7.7.4.1 as

the core rule: It represents a certain convergence of theoretical considerations

coming from worst-case upper bounds (see Subsection 7.7.3) with practical devel-

opments (see Subsection 7.7.4.2), it has been deliberately kept free from purely

heuristical considerations (as much as possible — only the clause-weights appear

to be unavoidably of heuristical nature), and this one rule actually represents the

core of modern branching rules for look-ahead solvers. As explained in Subsection

7.7.3, the underlying distance started from a combination of ∆n and the number

of new 2-clauses (for inputs in 3-CNF), but experimental results forced ∆n to

leave, and the result is close to the rule dsj as a result of the development start-

ing with the Jeroslow-Wang rule — however the novelty is, and this came from

the theoretical investigations in worst-case analysis, to view the whole process

as applying a distance function, with the aim of maximising the number of new

clauses.6 In the literature on practical SAT solving, this target (creating as many

strong constraints as possible) has been first discussed in [Li99].

There have been a few attempts of going beyond the underlying distance:

1. In [Ouy99], Chapter 3, we find a scheme to dynamically adjust the weights

of clauses of length 2, leading to branching rule “B”. However, since this

considers the “old” clauses, it really means new clauses of length 1, i.e.,

5where for c ≥ n to hold, reduction by matching autarkies is needed (see [KL98, Kul03]
6The explanations in [HV95] for the first time concentrated on the role of unit-clause propa-

gations, however from the point of view of simplifying the current formula, not, as the distance
functions emphasises, from the point of view of the emergence of future reductions.
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unit-clauses, which from our point of view shouldn’t be considered in this

form by the branching rule, but it should be considered by the (r1) look-

ahead. So this scheme seems only to be another approximation of the look-

ahead, where at least for “look-ahead solvers” the r1-look-ahead seems

mandatory now.

2. Van Maaren et al considered non-linear approximations of CNF in or-

der to gain a deeper, geometrical understanding of the problem instance.

These efforts culminated in the branchings rule discussed in [vW00], where

branching rule “MAR” is presented. The main idea is to derive for the

residual clause-set in a natural way an n-dimensional ellipsoid (where n

is the number of variables of the current clause-set), where each variable

corresponds to one axis of the ellipsoid, and then the geometry of the el-

lipsoid can tell us which variable might have the biggest influence. Again

the problem is that it seems impossible to include into this picture the

logical inferences, i.e., the look-ahead. The fundamental problem is that

this point of view doesn’t seem to deliver a measure or a distance, and

thus it cannot be used to compare arbitrary problem instances. Perhaps

this restriction can be overcome in the future.

The most promising direction at this time for strengthened distances is presented

in Section 7.8, where, based on our general understanding of the interplay between

distances and trees, possibilities are discussed to optimise distance functions, even

online, so that one can start with a reasonable distance, as presented in the

subsequent Subsection 7.7.4.1, and then adapt it to the problem at hand.

7.7.4.1. Maximise the number of new clauses

We start with presenting the current state-of-the-art, which in its pure form is

the branching rule “MNC” (“maximise new clauses”) used by the OKsolver-2002,

and from this we make a “rational reconstruction” of earlier rules (in Subsection

7.7.4.2), which can well be understood as approximations of MNC.

MNC for a branching variable v and the residual clause-set F considers the

two branches F0, F1, where for a standard look-ahead solver we have Fε = ϕε ∗F ,

where ϕε is the extension of 〈v → ε〉 by unit-clause propagation, and uses as

distance the weighted number of new clauses

dMNC(F, F ′) =

rank(F )−1
∑

k=2

wk · ck(F ′ \ F ).

More precisely, multi-clause-sets should be used here, since typically in practice

multiple occurrences of the same new clause are counted, and no contraction

with existing clauses takes place. By optimisation on random 3-CNF at the (ap-

proximated) threshold, optimal weights could be established as approximatively

w2 := 1, w3 := 0.2, w4 := 0.05, w5 := 0.01, w6 := 0.003 and wk = 20.45 · 0.2187k

for k ≥ 7, where these weights also work quite well on other problem instances.

The “precise” combination of the two distances dMNC(F, F0),dMNC(F, F1) into
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one number happens via the τ -function, while in practice the product-rule is suf-

ficient (as discussed in Subsection 7.6). After the best variable has been chosen,

the first branch is selected as will be discussed in Section 7.9, where in practical

applications currently the scheme discussed in Subsection 7.9.1 seems to yield the

best results. A few remarks:

1. We have dMNC(F, Fε) = 0 iff Fε ⊆ F , in which case ϕε is a “weak autarky”

for F , and thus Fε is satisfiability equivalent to F, so no branching is

needed.

2. The more new clauses the better, and the better the shorter they are.

3. New clauses result from falsifying literal occurrences in (old) clauses which

are not satisfied — satisfied clauses are ignored by the distance (but will

be taken into account when choosing the first branch).

4. When performing look-ahead the behaviour of dMNC seems counterintu-

itive: Consider two variables v, w, where for v we have in both branches

many inferred assignments (by unit-clause propagation), but it happens

that they both result in just, say, one new clause each; on the other hand,

assume that for w in both branches there aren’t many inferred assignments

(possibly none at all), but more new clauses. Then w will be preferred over

v. Such examples can be constructed, but in practice it turned out that

attempts at balancing dMNC, by for example the number of inferred as-

signments, performed worse in almost all cases (which is also confirmed by

the historical development, as outlined in the subsequent subsection).7

Instead of clauses also more general “conditions” (“constraints”) can be trea-

ted, if partial assignments can be applied to them, and instead of new clauses

we then need to consider conditions whose domains have been restricted. Since

conditions can show much more variety in their behaviour, the problem of the

choice of weights for the “new conditions” becomes more pronounced; a first

approximation is to replace the length k of clauses by the size of the domain

of the condition, but in general one needs to keep in mind that the reason why

shorter clauses are preferred over longer ones is that they are more constrained,

i.e., will easier yield inferred assignments in the future. One can measure the

ratio of falsifying assignments for the new conditions (the higher the better), but

according to current knowledge extensive experimentation to find good weighting

schemes seems unavoidable. One also needs to take into account that while clauses

can only yield a single inferred assignment, other constraints can yields more

inferred assignments (at once; and potentially also other types of information

might be inferred, for example equality between variables). See Subsection 7.10.1

for some examples.

7The extreme case of zero new clauses needs to be handled (since distances need to be
positive), and for this case we have the autarky-reduction above; in [Kul99b] also the case of an
arbitrary number of new clauses is treated via the addition of “autarky clauses” (which actually
goes beyond resolution), and the OKsolver-2002 contains (deactivated) code for handling the
case of exactly one new clause. The future has to show whether this scheme is of value.



i

i

“p01c07˙heu” — 2008/11/16 — 15:59 — page 231 — #27
i

i

i

i

i

i

Chapter 7. Fundaments of Branching Heuristics 231

7.7.4.2. The historical development (for practical SAT solving)

An early branching scheme is presented in [JW90], and is known as the “Jeroslow-

Wang rule”. Since it is a rather confused rule, of weak efficiency and mixing

up several aspects, we do not further comment on this scheme. However this

scheme was at least historically of importance, since it allowed [HV95] to state an

improved branching scheme, with improved (though still confused) reasoning: The

Jeroslow-Wang rule is replaced by the “two-sided Jeroslow-Wang rule”, rejecting

the idea that branching schemes are “satisfiability driven”, and replacing this

paradigm by the “simplification paradigm”. We can interprete this rule by the

underlying distance d2JW(F, F ′) :=
∑rank(F )−1

k=1 wk · ck(F ′ \ F ) where wk := 2−k

(strictly following [HV95] it would be wk = 2−(k+1), but obviously the factor
1
2 doesn’t matter here). Reduction is unit-clause propagation and pure literal

elimination. No look-ahead is used (fitting with the choice of reduction(!)), and

as projection the sum is used. The choice of the first branch happens by the

Johnson-rule (see Subsection 7.9.2). We see that dMNC improves d2JW by

1. using the product as projection;

2. discriminating sharper between different clause-length;

3. using r1-look-ahead (instead of r0);

4. choosing of the first branch by the Franco-rule (see Subsection 7.9.1).

These shortcomings have been addressed piecewise by later developments as out-

lined below. Regarding our interpretation, we need to stress that the understand-

ing of the “two-sided Jeroslow-Wang rule” as based on the distance of counting

new clauses is a rational reconstruction, while the argumentation in [HV95] tries

to argue in the direction of “simplification”. However this is not really what

d2JW is aiming at, namely increasing the number of future forced assignments

(by unit-clause propagation or stronger means). In [HV95] we find a misleading

understanding of the sum d2JW(F, 〈v → 0〉∗F )+d2JW(F, 〈v → 1〉∗F ) (maximised

by the heuristics), which is there understood as estimating the simplification (as

a kind of average over both branches), and so the real target of the rule, creating

many new short clauses (for both branches(!)), where then the sum only acts as

a (bad) projection, remained hidden.

[VT96] improves upon this branching scheme by using the product as pro-

jection (incorporated in the branching rule dsj), apparently for the first time,

while still not using look-ahead. [DABC96] (the C-SAT solver) did not yet use

the product-projection, but introduced certain aspects of look-ahead (incorpo-

rating the first round of unit-clause propagation) and also a steeper decline for

the weights wk (close to the weights used by the OKsolver-2002 scheme), namely

now wk = − log(1 − (2k+1 − 1)−2), where the quotient wk

wk+1
is monotonically

decreasing, with limit 4. In Section 3.1 of [Ouy99] a possible derivation of this

rule is offered. A similar approach (but already using the product-projection, and

partially using r2 as reduction), improving the Satz solver, is discussed in [Li99].

While these heuristics aimed at “doing a thorough job”, there is also the direc-

tion of “cheaper heuristics”, mostly focusing on efficient implementations. The

basic idea is “MOM”, i.e., “maximum occurrences in clauses of minimum size”,
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and all these heuristics can be understood as approximations of “maximise the

number of new clauses”, driven by the kind of available data which happens to be

supported by the data structures. The solver Posit ([Fre95]) introduced efficient

data structures and an efficient implementation of r2-reduction (which altogether

made it very competitive), but regarding heuristics no progress over [VT96] took

place. Once the efficiency of r2-reduction (“failed literal eliminations”) for this

type of solvers (the “look-ahead solvers”) became apparent, the cost of measure-

ments needed to evaluate dMNC and variations as well as the cost of look-aheads

diminishes (relatively), and the branching scheme as embodied in its pure form

by the OKsolver-2002 (as discussed in Subsection 7.7.4.1) is now the common

standard of look-ahead solvers. The march-solvers extended the scheme in vari-

ous ways (see [Heu08]), considering only a subset of variables for the look-ahead,

as pioneered by [LA97], but the core rule has been left unchanged.

7.8. Optimising distance functions

Now we turn to the topic of improving distance functions by evaluating how

good they actually predict progress as given by the real branching trees. The

possibility of evaluating distances leads to the possibility of actually optimising

distances, and the two basic approaches are considered in Subsections 7.8.2, based

on the evaluation techniques discussed in Subsection 7.8.1. The subject of op-

timising distances has been studied in the context of theoretical upper bounds

(see Subsection 7.7.3). For practical SAT solving however there seems to be no

general attempt (considering arbitrary distances) in the literature. The notion

of “adaptive heuristics” as used in [Hv07] is based on a broad view of “heuris-

tics”, and actually only concerns the reduction process (see Subsection 7.7.2), by

dynamically adapting the set of variables eligible for reduction considerations,

thus weakening the reduction by excluding variables, and also adapting the set of

variables for a strengthened reduction.

7.8.1. Evaluating distance functions

The “relative” effectiveness of the distance function d used in a solver on one

particular instance (with medium-size branching tree) can be gauged (that is, re-

garding its “relative values”) as follows: Compute the distribution of the random

variable P−1 induced by Pd (see Definition 7.4.3) — a good distance function

yields a centred distribution (around E(P−1) = #lvs(T )), while a bad distance

function is more similar to the uniform distribution.

This evaluation is also computationally not very expensive: At each node

along the current path the probabilities of the branches are computed, and once

a leaf is found, then the product of these probabilities along the whole path

is dumped to a file; viewing the distribution of the random variable P with a

statistical tool kit (like R) might reveal interesting phenomena.8 That we consider

only “relative values” of d here means that an “optimal distance” d (with constant

8Handling the logarithms of the probabilities is likely advantageous. And one should keep
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P−1 = #lvs(T )) is derived from a canonical distance ∆µ with µ(v) = log #lvs(Tv)

(recall Lemma 7.4.9) by multiplying the branching tuple at each inner node with

an individual positive real number (possibly different for each node).

Care is needed with the interpretation of such evaluations: Comparing differ-

ent distance functions can be misleading (even on the same tree), since, metaphor-

ically speaking, to make some interesting predictions something needs to be risked,

and a thumb heuristic can have a smaller variance then a more powerful heuristic.

A weakness in using the variance for evaluating distance functions is that the

absolute values of the distances at different nodes are ignored. The second basic

possibility for evaluating distances on (given) trees is to use the upper bound

from Theorem 7.4.8, which on the other hand has the disadvantage that only the

worst nodes are considered (while the variance includes all nodes).

7.8.2. Minimising the variance or minimising the tau-upper-bound

A numerical value for the quality of the distance function d is given by the variance

Var(P−1) (the smaller the better, and the optimal value is 0); for convenience

the standard deviation
√

Var(P−1) might be used, and for comparing different

trees the normalised standard deviation

√
Var(P−1)

#lvs(T ) is appropriate, however these

quantities only serve as a “user interface” in our context, and are not considered

furthermore. By Lemma 7.4.4 we have an efficient recursive method for computing

the variance, which also does not cause space overhead since no additional storage

is required (if we do not want to visually inspect the spread of P−1). If we

have given several distance functions d1, . . . , dk, then we can choose the best

one (on average) as the one with minimal Var(P−1
di

). This method can also be

used “on the fly”, during the execution of a backtracking solver, with negligible

overhead, to dynamically adapt the solver to the problem at hand. Of course,

measuring the quality of a distance function by the variance Var(P−1
d ) enables not

only comparison of different distance functions, but if d depends on parameter α

(possibly a vector), then we can also optimise dα by minimising Var(P−1
dα

) (for

the given tree). A special (interesting) case is where d is given as a convex linear

combination of distances d1, . . . , dk (that is, d =
∑k

i=1 λi · di for λi ≥ 0 and
∑k

i=1 λi = 1). Actually, here the di do not need to be distances, but could even

assume negative values, if only we take care to restrict the λi accordingly to avoid

non-positive values of d. These optimisations could be also performed “online”.

Instead of minimising Var(P−1
dα

) one could consider minimising max(P−1
dα

) =

maxv∈lvs(T ) Pdα
(v)−1, i.e., minimising the worst-case upper bound from Lemma

7.4.1. This task is considerably simplified by applying logarithms. However this

optimisation is much rougher, since it only cares about getting rid off the most

extreme cases (this is the worst-case perspective), which might be weak since

the worst case might occur only rarely. So the only real alternative seems to

minimise the upper bound (max τ(d))max Σ(d), or better log((max τ(d))max Σ(d)) =

in mind that on the leaves we do not consider the uniform probability distribution, and so just
plotting the “observations “ is not meaningful.
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(max Σ(d))·log(max τ(d)), which still suffers from considering only the worst case,

but has the advantage that scaling of the distances is taken into account.

7.9. The order of branches

After having chosen the branching variable, the next step then is to order the

branches, which according to Subsection 7.7.2 is the task of the branching order-

ing heuristics (thus ordering of branches is not integrated into the τ -method, but

is an additional step).9 We extract an approximated “probability” that we have

a favourable situation, like finding a satisfying assignment for look-ahead solvers,

or “learning a lot” for conflict-driven solvers, and order the branches according to

this approximation (in descending order). Unfortunately yet not much theoreti-

cally founded is known about clause-learning, and the question here is only how

to compute “approximations” of some form of probability that a clause-set F is

satisfiable. Such “approximations” are achieved by satisfiability estimators P .

For unsatisfiable problem instances the order doesn’t matter (without learn-

ing), while for satisfiable instances, whatever the branching is, finding the right

first branch actually would solve the problem quickly (when ignoring the time

for choosing the first branch). While in previous sections often the problem rep-

resentation was not of importance, and very general satisfiability problems over

non-boolean variables could be handled, now the approaches are combinatorially

in nature and thus are more specific to (boolean) clause-sets. In Subsections 7.9.1

and 7.9.2 we consider the two schemes currently used in practice10. A difficulty is

that these two satisfiability estimators for choosing the first branch do not have

standard names; for ease of reference we propose the following names:

1. Since apparently the first approach has first been mentioned by John

Franco, we call it the “Franco heuristics” or “Franco estimator”.

2. The second approach was apparently first mentioned in [Joh74] in the

context of “straight-line programs”, which is close to our usage, while the

“Jeroslow-Wang heuristics” from [JW90] misuses the heuristics to actu-

ally choose the branching variable (as discussed in Subsection 7.7.4.2), so

it seems sensible to call the heuristics the “Johnson heuristics” (or the

“Johnson estimator”).

7.9.1. The Franco estimator: Considering random clause-sets

This approach, apparently first mentioned in the literature in [GPFW97] (in

the context of backtrack-free algorithms for random formulas), considers F as a

9In [Hv08] this is called “direction heuristics”. We prefer to speak of the ordering of branches
since our methods work for arbitrarily wide branchings, and they consider not just the first
branch.

10The OKsolver-2002 uses the first scheme, and on random 3-CNF this scheme appears to be
slightly stronger than the second one, an observation already made 1986 by John Franco in the
context of (incomplete) “straight-line SAT algorithms” (which do not backtrack but abort in
case of a failure).
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random element F ∈ Ω(p1(F ), . . . , pk(F )) of some probability space Ω depending

on parameters pi. So now we can speak of the probability PΩ(F ∈ SAT ) that

F is satisfiable. Yet this approach has not been applied in this form, and one

does not consider the (complicated) probability PΩ(F ∈ SAT ) of “absolute”

satisfiability, but instead the probability PΩ(ϕ∗F ∈ SAT ) that a random (total)

assignment ϕ satisfies a random F ∈ Ω. Most natural is to consider the constant

density model (with mixed densities), that is one considers all clause-sequences F

as equally likely which have n(F ) many (formal) variables and c(F ) many clauses

in total, where for clause-length k we have ck(F ) many clauses. Then actually the

random assignment ϕ0 can be fixed, say to the all-zero assignment, and due to the

independence of the clause-choices we have P (ϕ0∗F ∈ SAT ) =
∏

C∈F (1−2−|C|).
For efficiency reasons the use of the logarithm L(F ) := log

∏

C∈F (1 − 2−|C|) =
∑

C∈F log(1− 2−|C|) is preferable, where furthermore the factors log(1− 2−k) for

relevant clause-lengths k = 1, 2, 3, . . . can be precomputed. So the first approach

yields the rule to order a given branching (F1, . . . , Fm) by descending L(Fi) =
∑

k∈N0
ck(Fi) · log(1 − 2−k).

7.9.2. The Johnson estimator: Considering random assignments

The second approach considers the specific F equipped with the probability

space of all total assignments, and the task is to approximate the probability

#sat(F )/2n(F ) that a random assignments satisfies F , where #sat(F ) is the num-

ber of satisfying (total) assignment. Since for conjunctive normal forms falsifying

assignments are easier to handle than satisfying assignments, we switch to the con-

sideration of the probability P0(F ) := #usat(F )/2n(F ) = 1−#sat(F )/2n(F ) that

a total assignment falsifies F (where #usat(F ) is the number of total assignments

falsifying F ). We have the obvious upper bound P0(F ) ≤ #usat(F )/2n(F ) ≤
P 1

0 (F ) :=
∑

C∈F 2−|C|, which is derived from considering the case that no total

assignment falsifies two (different) clauses of F at the same time. The lower index

“0” in P 1
0 (F ) shall remind of “unsatisfiability”, while the upper index indicates

that it is the first approximation given by the “inclusion-exclusion” scheme. Using

P 1
0 as approximation to P0, we obtain the rule to order a branching (F1, . . . , Fm)

by ascending
∑

k∈N0
ck(Fi) · 2−k. We see that this method in principle is very

similar to the first method, in both cases one minimises (for the first branch)

the weighted number cw(F ) =
∑∞

k=0 w(k) · ck(F ) of clauses of F , where the

weights w(k) depend only on the length k of the clauses. The only difference

between these two methods are the weights chosen: for the first method we have

w1(k) = − log(1 − 2−k), for the second w2(k) = 2−k. Asymptotically we have

limk→∞
w1(k)
w2(k) = 1, since for small x we have − log(1 − x) ≈ x. So the second

method can also be understood as an approximation of the first method.

Another understanding of this heuristic comes from [Joh74]: P 1
0 (F ) is the (ex-

act) expected number of falsified clauses for a random assignment (this follows im-

mediately by linearity of expectation). We remark that thus by Markov’s inequal-

ity we obtain again P0(F ) ≤ P 1
0 (F ). And finally we mention that if P 1

0 (F ) < 1

holds, then F is satisfiable, and the Johnson heuristic, used either without look-
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ahead or with look-ahead involving unit-clause-propagation, will actually find a

satisfying assignment without backtracking, since in case of P 1
0 (F ) < 1 for every

variable v ∈ var(F ) there exists ε ∈ {0, 1} with P 1
0 (〈v → ε〉 ∗F ) < 1. We also see

that using the Johnson heuristic without backtracking and without look-ahead

yields an assignment which falsifies at most P 1
0 (F ) many clauses of F . For fixed

uniform clause-length k we get at most P 1
0 (F ) = c(F ) · 2−k falsified clauses, that

is at least c(F ) · (1 − 2−k) satisfied clauses, which actually has been shown in

[H̊as01] to be the optimal approximation factor ( 1
1−2−k ) for the maximal number

of satisfied clauses which can be achieved in polynomial time (unless P = NP).

7.9.3. Alternative points of view

It appears to be reasonable that when comparing different branchings (for SAT

this typically means different branching variables) where one branching has a

branch with a very high associated probability of satisfiability, that then we take

the satisfiability-aspect more important than the reduction-aspect, since we could

be quite sure here. Yet it seems that due to the crudeness of the current schemes

such considerations are not very successful with the methods discussed above,

however they are applied in the context of a different paradigm, which does not

use approximated satisfiability probabilities of problem instances for the ordering

of branches, but uses approximations of marginal probabilities for single variables

as follows: Consider a satisfiable problem instance F (for unsatisfiable instances

the order of branches does not matter in our context) and a variable v ∈ var(F ).

If we can compute reasonable approximations p̃v(ε) for values ε ∈ {0, 1} of the

ratio pv(ε) of satisfying (total) assignments f with f(v) = ε, then we choose first

the branch ε with higher p̃v(ε). The main structural problem of this approach is

that it focuses on single variables and cannot take further inferences into account,

while when having a satisfiability probability estimator P (F ) at hand, then we

can improve the accuracy of the approximation by not just considering P (〈v →
ε〉 ∗ F ) but applying further inferences to 〈v → ε〉 ∗ F . However especially for

random problems this approach shows considerable success, and so we conclude

this section by some pointers to the relevant literature.11

The basic algorithm for computing the marginalised number of satisfying

assignments (i.e., conditional on setting a variable to some given value) is the

“sum-product algorithm” (see [KFL01]), also known as “belief propagation”. This

algorithm is exact if the “factor graph”, better known to the SAT community

as “clause-variable graph” (for clause-sets; a bipartite graph with variables and

clauses as the two parts), is a tree. Considering the variable-interaction graph

vig(F ) (nodes are variables, joined by an edge if occurring together in some

constraint), in [KDG04] approximations pk
v(ε) of pv(ε) for a parameter k ∈ N0

11Another problem with this approach is that for good predictions variables v with “strong
bias”, i.e., with large |p̃v(0)− p̃v(1)| are preferred, which interferes with the branching heuristics
(for example on unsatisfiable instances preferring such variables seems rather senseless). This
is somewhat similar to preferring a variable v with one especially high value P (〈v → ε〉 ∗ F ),
but now the problem is even more pronounced, since a “confident” estimation p̃v(ε) requires
p̃v(1− ε) to be low, and such biased variables might not exist (even when using precise values).
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are studied (for the purpose of value ordering) where the approximation is precise

if k ≤ tw(vig(F )), the treewidth of the variable-interaction graph. A recent

enhancement of belief propagation is “survey propagation”; see [BMZ05] for the

original algorithm, and [Man06, HM06] for further generalisations.

Finally, to conclude this section on the order of branches, some aspect is

worth to mention which indicates that the order of branches should also take the

(expected) complexity of the branches into account. Say we have a branching

variable v, where branch v → 0 has approximated SAT probability 0.7 and ex-

pected run time 1000s, while branch r → 1 has approximated SAT probability

0.3 and expected run time 1s. Then obviously branch v → 1 should be tried first.

Apparently this approach has not been transformed yet into something really

workable, likely for the same reason as with the “rational branching rule” men-

tioned in Subsection 7.2.1, namely that the estimations for running times are far

too rough, but it explains the erratic success of methods for choosing the branch-

ing order according to ascending expected complexity (easiest problem first) in

practice on selected benchmarks.

7.10. Beyond clause-sets

The general theory of branching heuristics, developed in Section 7.2 to Section

7.6, is applicable to any backtracking algorithm, including constraint satisfaction

problems (with non-boolean variables), and also the methods discussed in Section

7.8 are applicable in general. However the special heuristics discussed in Section

7.7 and Section 7.9 focused on SAT for boolean CNF. In this section we give an

outlook on heuristics using more general “constraints” than clauses, considering

“generalised clauses” in Subsection 7.10.1 (for examples BDD’s), which support

generic SAT solving (via the application of partial assignments), and considering

representations from constraint programming in Subsection 7.10.2.

7.10.1. Stronger inference due to more powerful “clauses”

Staying with boolean variables, a natural candidate for strengthened clauses are

OBDDs. [FKS+04] is a good example for this direction, which also contains an

overview on other approaches. Actually, OBDDs are only a stepping stone for

[FKS+04], and the form of of generalised clauses actually used are “OBBDs on

steroids”, called “smurf’s”, which store for every partial assignment (in the respec-

tive scope) all inferred assignments. In accordance with the general scheme MNC

from Subsection 7.7.4.1, but without (i.e., with trivial) look-ahead12, [FKS+04]

define for each smurf a weight after the branching assignment, which reflects the

reduction in the number of variables of the smurf due to inferred assignments, di-

rectly and with exponential decay also for the possible futures. More lightweight

approaches include equivalence reasoning; see [Li03] for heuristical approaches to

include the strengthened reasoning efficiently into the look-ahead of the heuristics.

12likely due to the fact that standard clause-learning is used, whose standard data structures
are incompatible with stronger reductions and look-aheads
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7.10.2. Branching schemes for constraint satisfaction

While the previous Subsection 7.10.1 considered “generalised SAT” in the sense

that, though more general “constraints” are used, they are very “structured”

w.r.t. allowing efficient inspection of the effects of (arbitrary) partial assignments.

The field of constraint satisfaction on the other side tends to take a black-box

point of view of constraints. The theory developed in this chapter yields a straight-

forward canonical basic heuristics for this environment, and we present these

considerations below. First however some general comments on the discussion of

branching heuristics for constraint satisfaction problems (CSPs) in [van06].

The branching strategy (see Section 4.2 in [van06]) selects the way in which to

split the problem. For SAT solving binary branching on a variable is absolutely

dominant (only in theoretical investigations more complex branchings are used),

and thus for practical SAT solving the problem of the choice of branching strategy

does not exist (at this time): An essential feature of SAT solving (compared for

example with CSP solving) is that problems are “shredded” into tiny pieces so

that the “global intelligence” of a SAT solver can be applied, and only “micro

decisions” are made (via boolean variables), always on the outlook for a better

opportunity (which might arise later, while by a more complex branching we

might have made choices too early). Translating a problem with non-boolean

variables to SAT (with boolean variables) typically increases the search space.

On the other hand, [MH05] showed that this increased search space also contains

better branching possibilities: A d-way branching for a variable v with domain

Dv of size d (i.e., v = ε1, v = ε2, ..., v = εd for Dv = {ε1, . . . , εd}) can always

be efficiently simulated by a 2-way branching (corresponding to v = ε, v 6= ε for

some ε ∈ Dv), but not vice versa.

The variable ordering heuristics (see Section 4.6.1 in [van06]) is responsible

for choosing the branching variable (given that only branching on a single vari-

able is considered), which for SAT solving is typically just called the “branching

heuristics”. The general tendency seems to be also to choose a variable minimis-

ing the expected workload, but surprisingly the integration of the information on

the single branches (for the different values in the domain of the variable) into one

single number, i.e., the task of the evaluation projection, has apparently never

been systematically considered, and consequently the handling of projection is

weak. Thus, though 2-way branching can have an edge, as mentioned above,

there seems to be some scope of improvement for existing d-way branching (and

other schemes yielding non-binary branching) by using the τ -projection (which

plays out its strength in a context where various branching widths occur!).

The value ordering heuristics (see Section 4.6.2 in [van06]) is responsible for

choosing the order of the branches (compare Section 7.9 in this chapter). In

(standard, i.e., binary) SAT branching this just means the choice of the first

branch.

Now to the most basic measures and distances. The basic estimation for prob-

lem complexity for boolean problems F is 2n(F ), the size of the search tree, from

which we derive the measure µ(F ) = n(F ) = log2 2n(F ) (motivated by Lemma
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7.4.9). As already mentioned at several places, using the distance ∆n is rather

weak for general SAT solving. However this measure can be strengthened by ei-

ther strengthening the look-ahead, or by differentiating more between variables.

The latter is possible for CSP problems, where variables v have domains Dv, and

then µ(F ) = log
∏

v∈var(F )|Dv| =
∑

v∈var(F ) log(|Dv|) becomes a “more informed”

measure of problem complexity (note that µ(F ) = n(F ) if all variables are binary).

When considering arbitrary branching width, usage of the τ -function becomes

compulsory, and comparing different branchings F ; (F i
1, . . . , F

i
pi

) is then done

by choosing the branching i with minimal τ(∆µ(F, F i
1), . . . ,∆µ(F, F i

pi
)). When

combined with look-ahead (recall, this always refers to the branching heuristics

(alone), that is, the F i
j are better approximations of the reduced formula com-

puted when actually choosing this branch), this yields decent basic performance.

However if more information on the constraints is available, then the approach as

discussed at the end of Subsection 7.7.4.1 likely will yield stronger results.

7.11. Conclusion and outlook

Regarding branching heuristics (the main topic of this chapter), one could say that

historically the first phase has been finished by now, laying the foundations by

constructing basic heuristics, as outlined in Subsection 7.7.4, and developing the

basic theory as outlined in Sections 7.3 to 7.5. Now a much stronger emphasise

should be put on precise quantitative analysis, as discussed in Section 7.8 on

optimising (and measuring) the quality of heuristics, including the consideration

of specialised branching projections as discussed in Section 7.6. Case studies on

classes of problems should be valuable here. When saying that for branching

heuristics the initial phase of theory building and systematic experimentation is

finished, then actually this can only be said about finding the branchings, while

regarding ordering the branches (as surveyed in Section 7.9) we are lacking a good

theoretical foundation, and likely also much further experimentation is needed.

The general theory (on finding good branchings and ordering them) is applica-

ble also beyond clause-sets (as discussed in Section 7.10), and while for clause-sets

we have at least reasonable intuitions what might be good measures (distances)

and ordering heuristics, here the situation is much more complicated. Combining

the theory developed in this chapter with the different approaches from the field

of constraint satisfaction (which in my opinion lacks the general theory, but has

a lot to say on specific classes of constraints) should be a good starting point.

Finally, a major enterprise lies still ahead of us: theoretical foundations for

heuristics for conflict-driven SAT solvers. In the introductions to Sections 7.7

and 7.9 we made a few remarks on conflict-driven solvers, but mostly we did not

cover them in this chapter due to their non-tree-based approach and the lack of

a theoretical foundation. See Chapter 4 of this handbook for more information

on these solvers and the underlying ideas, where the basic references are as fol-

lows: With the solver GRASP ([MSS99]) the basic ideas got rolling, then Chaff

([MMZ+01, ZMMM01]) was considered by many as a breakthrough, while further

progress was obtained by the solvers BerkMin ([GN02]) and MiniSat ([ES04]).
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sitet, Department of Computer and Information Science, SE-581 83
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