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SAT for ATP

Harnessing SAT

The power of solving propositional logic, most importantly
determining a propositional formula to be satisfiable or
unsatisfiable
resp. to be falsifiable or tautological,

has increased dramatically over the last two decades.

Especially industrial applications (safety, correctness)
are impressive.

Also apparently every modern ATP-solver nowadays uses SAT.
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SAT for ATP

Standard use of SAT in ATP

The typical use of SAT in ATP

is based on abstraction:
abstract away the parts of the problem

beyond propositional logic.

This leads to two main characteristic features:
1 heavy interaction between the non-propositional parts of the

solver and the SAT part;
2 the SAT problems are relatively small.

A similar approach one finds in SMT (“SAT modulo theory”), and,
based on the computer algebra, in MathCheck (Zulkoski, Bright,
Heinle, Kotsireas, Czarnecki, and Ganesh [13]).
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SAT for ATP

Heavier use of SAT

In the direction of Herbrand’s Theorem, it is also possible to have

SAT solving as the main part of the solving process.

Basically
1 “all instantiations” of quantifiers are considered (reducing the

problem to infinite propositional logic),
2 and compactness is applied (creating infinitely many finite

problems).
This results naturally in a much heavier use of SAT.

Now very big SAT problems are to be solved.

Our endeavours are going in this direction.
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SAT for ATP

SAT solving different for easy and hard

Not only are the SAT problems arising in this heavy use of SAT very
big,

but they are typically also very hard.

The success of SAT solving over the last two decades however

concentrates on problems which are
(very) big, but indeed (relatively) easy —

these methods go aggressively for the “easy success”,
not for the worst case.

So new SAT tools are needed:

integrating aggressive solving and worst-case planning.

O Kullmann (Swansea) ATP via SAT 20.3.2017 5 / 36



SAT for ATP

This talk

In this talk I

focus on the heaviest use of SAT:
the problem is directly expresses as a SAT problem

(for efficiency of encoding).

This then needs also

improved SAT solving.

But that’s not everything ...
Since we are PROVING something,

big big propositional proofs need to be handled.
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Applications in Ramsey theory

Ramsey theory

Many problems of Ramsey theory can be understood easily,
and they yield great problems for SAT.

The fundamental theme is:

For infinite sets X and certain simple “structures” on X :
how resilient is this structure against finite partitioning?
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Applications in Ramsey theory

A fundamental problem I

Consider
a finite set P of polynomials P(x1, . . . , xk ) over k variables,
with integer coefficients.

Let

N(P) :=
{
{x1, . . . , xk} ⊂ N : ∀P ∈ P : P(x1, . . . , xk ) = 0

}
be the set of (common) zeros (Nullstellen) of P over the natural
numbers, where for convenience we don’t take the tuple, but just the
set of components of the zero-vector.

N = {1,2, . . .}
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Applications in Ramsey theory

A fundamental problem II

Definition
P is called m-regular for some m ∈ N, if the hypergraph N(P) is not
m-colourable, that is:
For every partition X = X1 ∪ · · · ∪ Xm of X into m subsets there is i and
~x ∈ N(P) with ~x ⊆ Xi .
P is called regular if it is m-regular for all m ≥ 1.

A central problem of Ramsey theory is:

Determine the (m-)regular systems P.

The linear case was completely solved by Rado [9], generalising work
by Schur [10] and van der Waerden [12]; a recent overview was given
in Baglini [2].
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Applications in Ramsey theory

A fundamental problem III

The general case is wide open.

By Hilbert’s Tenth Problem the case “1-regularity” is undecidable.

But for all m ≥ 2 the complexity of “m-regularity” is completely
open (from linear-time to undecidable).

And so is “regularity”.

We considered the single equation x2 + y2 = z2.
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Applications in Ramsey theory

Finitisation

Partitioning into two sets, i.e., m = 2, can be directly encoded using
boolean variables:

For n ∈ N let vn be a boolean variable.
vn true means the first part, vn false means the second part.

Now P is 2-regular iff the (possibly) infinite disjunction∨
~x∈N(P)

(
∧
x∈~x

vx) ∨ (
∧
x∈~x

¬vx)

is a tautology, which by compactness is true iff for some n ∈ N the
finite disjunction

considering only the ~x ∈ N(P) with ~x ⊆ {1, . . . ,n}

is a tautology.
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Applications in Ramsey theory

The Boolean Pythagorean Triples Problem I

The question about the regularity of

x2 + y2 − z2

is a long-standing open problem.

Only 1-regularity was known (since there exist Pythagorean
triples, e.g., 32 + 42 = 52).

Ron Graham asked in the 80s specifically whether 2-regularity
holds (we call this the Boolean Pythagorean Triples Problem).

There were some opinions (conjectures) that it is not 2-regular.
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Applications in Ramsey theory

The Boolean Pythagorean Triples Problem II

We (together with Marijn Heule and Victor Marek)
showed via SAT the 2-regularity (Heule, Kullmann, and Marek [6]),

and got $100 for it.

Such a solution needs a proof, which can be automatically checked.

We provided a proof of 200 TB and checked it.
Meanwhile it has also been checked independently (Cruz-Filipe,

Marques-Silva, and Schneider-Kamp [3]).
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Applications in Ramsey theory

Concrete (practical) re-formulation I

Call three natural numbers a,b, c ∈ N a Pythagorean triple if
a2 + b2 = c2.

Is it possible to partition N into two sets A ∪ B = N,
such that neither A nor B contains a Pythagorean triple?

Let’s start with partitioning N into even and odd numbers. Remember:
even * even = even, odd * odd = odd
even + even = even, odd + odd = even.

Thus there can be no Pythagorean triple consisting only of odd
numbers.
So we are fine on the odd part, but the even part contains e.g.

2 · (3,4,5) = (6,8,10), 62 + 82 = 102.
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Applications in Ramsey theory

Concrete (practical) re-formulation II

Continuing with that attempt, we now needed to partition the even
numbers further,

to destroy all Pythagorean triples.

For a more experimental approach, it would be easier

instead of partitioning N,
to partition {1, . . . ,n} for n = 5,6,7 . . .

So we can first destroy all Pythagorean triples with hypotenuse c ≤ 5,
then c ≤ 6, and so on. At the beginning it’s pretty simple, since there
are only few Pythagorean triples:

(3,4,5), (6,8,10), (5,12,13), (9,12,15), (8,15,17), . . .

But slowly it gets harder ... will it ever end?!? (YES, as we showed.)
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Interlude on wheelbarrows

So what?

Alright,
an apparently hard mathematical problem has been solved (open
for more than 30 years),
some people got excited about it,
and we got some media attention (due to “AI”, “supercomputer”
and “largest proof ever”; see links).

But 200 TB is hard to read,
and so do we now know anything more than just

“yes, it is true” ?!
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Interlude on wheelbarrows

The wheelbarrows

There is an old story about a worker suspected of
stealing: every evening, as he leaves the factory, the
wheelbarrow he rolls in front of him is carefully inspected.
The guards can find nothing. It is always empty.

Finally, the penny drops: what the worker is stealing are
the wheelbarrows themselves ...

Lesson: we should look not just at the message itself, but also at its
environment/circumstances (which might actually be more important).
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Interlude on wheelbarrows

Wheelbarrow I: the length is the message

From an “ordinary” mathematical point of view, the length of the proof
is a hindrance, is in the way of meaning — but perhaps

the meaning is its meaninglessness ?!

More precisely, we consider computational complexity theory:
1 Here we are interested in inherent complexity.
2 The questions we are considering are investigated as examples of

inherent high complexity.
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Interlude on wheelbarrows

Wheelbarrow II: the brutishness is the message

To add insult to injury:

SAT is actually (some kind of) brute-force!

So the proof we delivered is a Proof by Exhaustion.

Case distinctions — a “blind spot” of mathematics?

Is there a Science of brute-force ?!
(See our forthcoming CACM article Heule and Kullmann [4] on this
subject.)
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Interlude on wheelbarrows

Wheelbarrow III: the method is the message

Some speak of “clever/inspired/intelligent brute-force”. We prefer to
see it as

SAT = brute-force + brute reason.

“Brute reason” organises the brute-force search.

I can stand brute force, but brute reason is quite unbearable.
There is something unfair about its use. It is hitting below the
intellect. O. Wilde (The Picture of Dorian Gray)
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Interlude on wheelbarrows

The SAT revolution

Via SAT we can solve problems by “brute-force” which seem
completely hopeless otherwise.

So very different from e.g. the Four Colour Theorem —
we can’t just tick off possibilities, but magic is needed.

Modern microprocessors not possible without SAT (Electronic
design automation (EDA)).
Major applications in verification (railway industry).
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Interlude on wheelbarrows

Perhaps just a mechanically operated lure?

Perhaps the mathematical problem here is just useful as a kind of
sparring partner, to help developing the methods?

The specific SAT technique here,
Cube-and-Conquer ([5, 6],

has been developed in the context of solving
such purely mathematical problems ([1]),
and is now one of the strongest methods

to solve industrial problems!
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Interlude on wheelbarrows

Further motivations I

Knowing that something is true might make it easier to find an
“ordinary” (possibly more general) proof.

An example could be the Erdös Discrepancy Problem (open since
1932).

In 2014, finally a special case was solved by SAT solving Konev
and Lisitsa [7], yielding an extracted proof of 13 GB.

While the general statement was proven 1 1/2 years later in Tao
[11].

Furthermore, the ATP-proof might yield numerical details (in our case:
7825).
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Interlude on wheelbarrows

Further motivations II

The formal proof found by SAT might be investigated:
Perhaps we can find structure in the proof.
Via some form of proof mining, we might extract more specific
information on the result (the proof shows more than a mere
existence-result).
We might even attempt “method mining”, studying the interactions
between the methods used to find the proof and the problem itself.

Yet these are speculations, but hopefully in the future we gain more
understanding.

An important aspect here is
to lift (part of) mathematics to the meta-level,

to integrate the logical foundations.
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Interlude on wheelbarrows

Further motivations III

Proof mining (here in a concrete, direct sense – mining the 200 TB)
could also become interesting in the “negative sense”:

The “traditional” interest is to search for a “short proof”.

But perhaps the question, why there isn’t one, or

what makes the problem hard,

is the real question here?!

O Kullmann (Swansea) ATP via SAT 20.3.2017 26 / 36



SAT: C&C

SAT solving

The previous DNF is negated, yielding a CNF, and the task is to show

unsatisfiability (i.e., inconsistency).

SAT solvers solve CNFs.
The hybrid SAT-solving method Cube-and-Conquer, whose idea
we developed in the context of applications to Ramsey theory, was
adopted to the task (various heuristics optimised).
Due to the nature of “C&C”, whether performed on a single
computer or on a cluster doesn’t matter.
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SAT: C&C

C&C: old and new

SAT is “solving CNFs by brute-force, guided by brute reason”.
Two main paradigms for “brute reason” have been developed.
The first and older one is about logical inference and systematic
case distinctions (“systematic and slow”).
The second and newer one (mainly responsible for the SAT
revolution in industrial applications) is about making mistakes
quickly and learning from them (“quick and dirty, but with magic
local cleverness”).

C&C combines the two:

First we build a systematic (and clever) big(!) case distinction.
Then we solve the cases by the quick method (independently!).
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Proofs

Actually proving it

Just claiming to have solved it — that’s not much.

The total run-time for solving the problem was two days on a
supercomputer, where we used roughly 1000 = 103 cores.
Without our novel techniques, just using standard SAT techniques,
it would have needed say 1000 times more time.
Still doable in principle (the supercomputer has 106 cores).
But the point is the extracted proof (which we got down to “just”
200 TB).
The total run-time must be small, AND the proof format must allow
for good compression.
Without the novel proof format, a blow-up of space of at least a
factor of 1000 would have occurred (compared to run-time).

Remark: without SAT, the age of the universe would be nothing to
solve it.
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Proofs

Independent verification

Recently, the first (published) independent verification took place
(Cruz-Filipe et al. [3]):

They used the 106 main cases (still highly complex), as computed
by our SAT-solving system (altogether 68 GB).
These 106 SAT problems were solved by some SAT solver.
For each case extracting a proof using our tools for preprocessing.
Finally on each of the 106 extracted proofs, a verified proof
checker was run.
This checker was extracted by the Coq interactive theorem prover
(with some work-arounds for speed and memory).
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Meaning of those proofs

Useful?!

A typical argument, as articulated in the Nature article ([8]):

If mathematicians’ work is understood to be a quest to
increase human understanding of mathematics, rather than to
accumulate an ever-larger collection of facts, a solution that
rests on theory seems superior to a computer ticking off
possibilities.

One can see here a widespread missing understanding of computer
science: computers simply “tick off possibilities”.

The systematic background and motivation for e.g., ATP, SAT
solving, formal methods, is not known.
The complexity issues touched here might be far more
interesting/relevant than the concrete result in Ramsey theory.
Last, but not least: the “possibilities” are non-trivial, and simple
algorithms might take forever.
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Meaning of those proofs

Perhaps “meaningless” is the true meaning?!

The “computer ticking off possibilities” is actually quite a
sophisticated thing here, and is absolutely crucial for the analysis
for example of the correctness of microprocessors.
For some not yet understood reasons it seems that these
“benchmarks” from the field of Ramsey theory are relevant for the
perhaps most fundamental problem of computer science, the
question what makes a problem hard (e.g. the P vs NP problem).

It might thus well be, that at the direct level, the number 7,825
is a kind of “pure fact”, but the methods for determining this
are highly relevant – perhaps it is precisely that the "7,825"
has no meaning, which makes these computational(!)
problems meaningful – the bugs in the designs of complicated
artificial systems also have “no meaning”!

Likely not so for bigger minds ... so let’s consider aliens.
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Meaning of those proofs

“Alien” versus “human” truth

Let’s call “alien” a true statement (best rather short) with only a very
long proof.

Already the question, whether we can show something (like our
case) to be alien, is of highest relevance.
But independently, such “alien truths” (or “alien questions”) arise
in formal contexts, where large propositional formulas describe
engineering systems, which in their complexity, especially what
concerns “small” bugs, are perhaps beyond “understanding”.
Mathematicians dislike “nitty-gritty details”, but prefer “the big
picture” (handwaving).
Moreover, typically here the social-economic situation(!) actually
inhibits any form of understanding (even if possible) – this needs
to go quickly, in a fully automated way, and likely also in a
secretive fashion. (Thanks to Markus Roggenbach and his
forthcoming book for pointing this out.)
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Meaning of those proofs

More on “alien truths” (for the reader of the slides)

Here a concrete example of an alien truth: link
Some more details (see [4]):

Short statement.
Only very very long proof (best inherently!).
But all kind of combinatorial counts (the number of so-and-so of
size 1234 etc.) are only “weakly alien”; they are not truly
awe-inspiring, since this is really just ticking off possibilities.
Also a real proof is needed, not just a computation (like the
minimum number of givens is 17 in general Sudoku; these
examples typically are also only “weakly alien”).
It must also not just involve mathematical reasoning, plus a
derived list of possibly many, but simple cases. Our proof is “truly
alien”: no insights! And mysteriously avoiding an enormous
exponential effort.

O Kullmann (Swansea) ATP via SAT 20.3.2017 34 / 36

https://s-media-cache-ak0.pinimg.com/736x/f9/54/cc/f954cc4c4b2b267aff7c86de342ba52c.jpg
http://www.theoccultsection.com/wp-content/uploads/2011/10/fs_sense_of_awe.jpg
https://en.wikipedia.org/wiki/Mathematics_of_Sudoku#Ordinary_Sudoku
https://en.wikipedia.org/wiki/Mathematics_of_Sudoku#Ordinary_Sudoku
http://www.bigdata-madesimple.com/wp-content/uploads/2015/01/bigdata-knows-everything.jpg
http://comicsalliance.com/files/2016/01/addams-04.jpg


Conclusion

What’s to be understood

I ATP hopefully has still much more to gain via SAT.
II For hard problems the interplay between “old” and “new” in C&C

seems crucial.
III Hopefully we gain much more such “alien insights”.
IV And hopefully new true knowledges arises: at the direct level

(deeper understanding through algorithms), and at the indirect
levels (the methods, the reflection).
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Conclusion

End

(references on the remaining slides).

For my papers see
http://cs.swan.ac.uk/~csoliver/papers.html.
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