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Introduction

XOR

XOR-constraints are important for SAT solving and proof theory:
Many SAT problems contain them (especially cryptographic ones).
Many lower bounds on proof systems use them (in some form).

Only very recently have investigations started, whether the standard
form of SAT translation can be improved.

Based on various hardness measures,
we start a systematic investigation.

That is, we consider all possible “representations” F of the boolean
function given by a system S of XOR-constraints, and minimise
“hardness” of F .
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Introduction

Changing some views I

This talk concentrates on the fundamental ideas:

There are various rather subtle
but crucial distinctions to be made.

To start with:

Translation = encoding + CNF-representation.

The “encoding” maps the non-boolean to boolean variables.
The “representation” maps the boolean function to a clause-set.
We consider only representations here.

Using a “wild” encoding, every constraint can be trivialised!
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Introduction

Changing some views II

From a CSP-perspective it is not natural to think of

auxiliary variables (additional variables in CNF-representation)

as well as constraint scopes of arbitrary size.

Compared with this, our approach makes a strong distinction between

with/without auxiliary variables

(both have their advantages).
And allows naturally to handle

clauses of arbitrary size.
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Introduction

Changing some views III

A representation of a boolean function f

is not just sat-equivalent to f ,

but must be either logically equivalent to f (without auxiliary
variables),

or, when using auxiliary variables, then the satisfying assignments
of the presentation, when projected to the variables of f , must
yield precisely the satisfying assignments of f .

Only in this way can the representation replace f , in the context of
other clauses.
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Introduction

Changing some views IV

Finally, we consider a boolean function f and a CNF-representation.

So there is nothing than the representation.

The “other clauses”, which come from different constraints (making up
the whole SAT-problem), are not here —

this belongs to another part of the theory,
the combination of CNF-representations.

We study the CNF-representations here on their own.
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Introduction

Hardness measures and hierarchies

The hardness measures h : CLS → N0 correspond to hierarchies:
the sets of the hierarchy are {F ∈ CLS : h(F ) ≤ k};
conversely, the hardness of F is the index of the first layer with F .

Sometimes it is more intuitive to think in terms of these hierarchies:
These hierarchies are hierarchies for polytime SAT solving.
However, we consider them under a different point of view,
namely regarding representation of boolean functions.
So for example we are interested in the best combination of
hardness h(F ) and size amongst

all clause-sets (logically) equivalent to F .
The hardness-considerations distinguish the approach from KC
(Knowledge Compilation) — “hardness” must be relevant for SAT
solving. One could speak of “SAT-KC”.
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Introduction

Extension to SAT

We typically start with a measure

h0 : USAT → N0

and extend it to h : CLS → N0 via

considering the worst case of h0(ϕ ∗ F )
for partial assignments ϕ such that ϕ ∗ F ∈ USAT .

That is, h(F ) for satisfiable F is the maximum of h0(F ′) for F ′ obtained
from F by (partial) instantiation.

Link to proof theory

h0(F ) measures proof complexity of unsatisfiable F .
h(F ) measures how bad arbitrary instantiations can be
(this can happen when running a SAT solver!).

Oliver Kullmann (Swansea) SAT representations Banff 2014 8 / 38



Introduction

New point of view for proof theory

The current task of proof theory is, to over-simplify it:

Create artificial examples which are “hard”.

These examples are all unsatisfiable, and thus can be replaced by ⊥.
This arbitrariness is now turned into necessity as follows:

Consider a representation F of a boolean function.
We want to prove a lower bound on the size of a “good” F .
So “hard” structures should show up in F which are too small.
Thus the task now is to show, that those hard (artificial)
unsatisfiable instances are necessarily hidden in F (somehow).

Good representations never create “hardness”.
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Introduction

Intelligent representations

Yet typical for SAT translation:
Either direct (simple) translation of each sub-constraint (XOR,
cardinality, pseudo-boolean) — no “intelligence”
or “DPLL(something)” — all intelligence outside of SAT.

We want to change that game:

We use intelligence to produce the translation —
(a) possibly considering larger junks (e.g., several XOR-constraints),

(b) and/or different hardness of the representation.

(a) Conjecture:
For lumping together (creating larger junks),
treewidth etc. is also of practical importance.

(b) We can show (yet for artificial examples): allowing a bit more
“hardness” can save exponentially many clauses.
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Introduction

The main results reported here I

I report here on

lower and upper bounds for
“good” SAT-representations of XOR-clause-sets,

using various “hardness” measures to measure what “good” means.

We have a LATA 2014 paper Gwynne and Kullmann [9] (click), while
the underlying (arXiv) report is Gwynne and Kullmann [7] (click).
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Introduction

The main results reported here II

Combining
a translation of SAT-translations into monotone circuits, motivated
by Bessiere, Katsirelos, Narodytska, and Walsh [2],
with the lower bound on monotone span programs in Babai, Gál,
and Wigderson [1]

we show that there is no polynomial-size SAT representation of
arbitrary XOR-clause-sets, using the well-known notion(?!?) of quality,
which we call AC-representation.

“AC-representation” — a CNF-representation
where every forced assignment after any partial instantiation

is detected by unit-clause propagation.
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Introduction

The main results reported here III

On the positive side:

We show that computing an AC-representation is fpt in the
number m of XOR-clauses.

Considering the strongest criterion,

representation via propagation-complete clause-sets PC
(introduced in Bordeaux and Marques-Silva [3])

“PC = absolute AC” — now taking also
the auxiliary variables into account

we obtain various “intelligent” translations:
1 The default representation X1 for m = 1 is in PC.
2 With a more intelligent representation X2 for m = 2 we also get PC.
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Introduction

The main results reported here IV

We also start an analysis of the default representation X1(S) regarding
various hardness measures, showing

already for two XOR-clauses this is very bad considering
hardness hd(X1(S)) (for unsat the same as clause-space of
tree-resolution minus 1),
while at least for two XOR-clauses it could be taken as “alright”
when considering w-hardness whd(X1(S)) (using a generalised
notion of width).

More precisely, for m = 2, hd(X1(S)) is up to n − 2 for n variables,
while whd(X1(S)) = 3.

We don’t know whether the (generalised) width only grows as a
function of m (and not of n — recall m ≤ n, and in general m is much
smaller than n).
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Introduction

The main results reported here V

Remark: So the standard representation X1(S) is very bad(!) (already
for m = 2) for look-ahead solvers:

hard unsatisfiable instances have precisely 2n ± x nodes,
so already n = 30 is out of scope,

while CDCL-solvers handle n = 10000.
However with the new improved translation X2(S) (available yet only
for m = 2):

Now also very easy for look-ahead solvers!

So here we have is an enormous improvement for look-ahead solvers
(while a modest improvement for CDCL).
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Introduction

Other approaches at intelligent XOR-translations

While we show fpt in the number m of XOR-clauses, the weaker
parameter n, the number of variables, was show fpt in Laitinen,
Junttila, and Niemelä [18].
Practical results (SAT benchmarks) for translating
XOR-clause-sets into CNF-clause-sets are in Laitinen, Junttila,
and Niemelä [17].
These authors also introduced the DPLL(XOR) framework, for
integrating dedicated XOR-reasoning into SAT solving (Laitinen,
Junttila, and Niemelä [15, 16]).
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Introduction

The project: a theory of SAT representations

See
SOFSEM 2013 (click) and JAR (click) for the basic “hardness
measures”, measuring the “quality” of a representation: Gwynne
and Kullmann [5, 8]

Trading quality for size, showing that the various hardness
measures yield hierarchies for the representation of boolean
function,

considering clause-sets up to equivalence
(which yields much stronger hierarchies):

Gwynne and Kullmann [6] (arXiv; click)
These “hardness measures” for proof complexity: Kullmann [14]
(arXiv; click).
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Basics of XOR

The trivial representation of XOR-constraints

Let’s assume we want to construct a “SAT representation” of
something, which includes an XOR-constraint

x1 ⊕ · · · ⊕ xn = ε, xi ∈ LIT , ε ∈ {0,1}.

To make life easier, we assume ε = 0, and we represent that
XOR-constraint simply as an XOR-clause C := {x1, . . . , xn} ∈ CL.

There is precisely one CNF-clause-set, which is equivalent to this
XOR-clause, and we denote it by X0(C) ∈ CLS.

X0(C) has 2n−1 clauses of length n.
For example X0({a,b}) = {{a,b}, {a,b}}.
X0(C) is perfect for small n.
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Basics of XOR

The standard representation of XOR-constraints I

We can use X0 piecewise, obtaining the first general translation:

X0 : CLS → CLS

X0(F ) :=
⋃

C∈F

X0(C).

Now, to obtain a small translation for arbitrary XOR-clauses C, we use
new variables. We split up C, using new variables yi for partial sums,
e.g. for {x1, . . . , x4}:

x1 ⊕ x2 = y2, y2 ⊕ x3 = y3, y3 ⊕ x4 = 0.

In general C is split into an XOR-clause-set F ′ with n − 1
XOR-clauses, and we obtain the representation

X1(C) := X0(F ′) ∈ 3–CLS,
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Basics of XOR

The standard representation of XOR-constraints II

where we apply X0 to the members of F ′.

We got
X1 : CL → 3–CLS.

So we can represent a single XOR-constraint. If we have many of
them, we apply the translation piecewise, obtaining

X1 : CLS → 3–CLS.

That is, for a general XOR-clause-set F ∈ CLS we get the
representation

X1(F ) :=
⋃

C∈F

X1(C) ∈ 3–CLS,

where new variables are used for the different XOR-clauses in F .
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Basics of XOR

How good is this representation?

We now have a representation X1(F ) ∈ 3–CLS for arbitrary sets F of
XOR-clauses.

This is the default representation, used nearly everywhere.
But is it “good” ?
And can we do it “better” ?!
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Hardness measures

Measuring “hardness”

We have developed various hardness measures

phd,hd,whd : CLS → N0

which measure the effort, in some way, to derive “everything” for all
instantiations.

The basis is hd,whd : USAT → N0.
Both measures use resolution (tree/dag resolution).
phd is a variation on hd.
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Hardness measures Generalised unit-clause propagation

Unit-clause propagation

A basic mechanism in determining satisfiability is

unit-clause propagation (UCP).

For example:{
{a}︸︷︷︸

unit-clause

, {a,b}, {b}
} 〈a→1〉−−−−→

{
{b}, {b}

} 〈b→1〉−−−−→
{
⊥
}
.

Detects and sets some forced assignments, repeatedly.
Possible in linear time, and is confluent.
Using the map r1 : CLS → CLS for UCP we have

r1(F ) :=


{⊥} if ⊥ ∈ F
r1(〈x → 1〉 ∗ F ) if ∃ x ∈ lit(F ) : ⊥ ∈ 〈x → 0〉 ∗ F
F otherwise

.
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Hardness measures Generalised unit-clause propagation

Generalised unit-clause propagation

Kullmann [11, 13] introduced the notion of

generalised unit-clause propagation
rk : CLS → CLS, k ∈ N0.

r0(F ) :=

{
{⊥} if ⊥ ∈ F
F otherwise

rk (F ) :=

{
rk (〈x → 1〉 ∗ F ) if ∃ x ∈ lit(F ) : rk−1(〈x → 0〉 ∗ F ) = {⊥}
F otherwise

.

rk (F ) can be computed in time `(F ) · n(F )2k−2.
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Hardness measures Generalised unit-clause propagation

Example: r2 is more powerful r1

r2 : CLS → CLS is (full) failed literal elimination.

Consider
F :=

{
{a,b}, {a,b}, {a,b}, {a,b}

}
.

We have that
1 r1(F ) = F (UCP does nothing).
2 r2(F ) = r2(〈a→ 1〉 ∗ F ) = {⊥}, since

r1(〈a→ 0〉 ∗ F ) = r1(
{
{b}, {b}

}
) = {⊥}.
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Hardness measures Hardness

Hardness via rk

For F ∈ USAT we define hd(F ) as the

minimum k ∈ N0 such that rk (F ) = {⊥}.

And UCk := {F ∈ CLS : hd(F ) ≤ k}.
F ∈ UC0 iff F is the set of all prime implicates of some boolean
function (mod subsumption).
UC1 = UC was introduced in del Val [4].
UC = SLUR ([5, 8]).

For unsatisfiable F , hd(F ) + 1 equals resolution tree-space.
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Hardness measures Forced assignments and p-hardness

Forced assignments

An assignment 〈x → 1〉 for a literal x and F ∈ CLS
is called forced, if 〈x → 0〉 ∗ F ∈ USAT .

Thus 〈x → 1〉 ∗ F is sat-equivalent to F .
So we can (and should!) apply the partial assignment 〈x → 1〉.
Detection of a forced assignment is coNP-complete.
So special cases need to be considered.
The rk detect and eliminate some forced assignments.
With k = n(F ) we get all forced assignments.

Btw, for a forced assignment 〈x → 1〉 also the literal x is called forced.
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Hardness measures Forced assignments and p-hardness

Propagation hardness

Let r∞(F ) := rn(F )(F ), that is, r∞ applies all forced assignments.

Now phd(F ) for F ∈ CLS is the

smallest k such that for all partial assignments ϕ
we have r∞(ϕ ∗ F ) = rk (ϕ ∗ F ).

Let PCk := {F ∈ CLS : phd(F ) ≤ k}.
PCk ⊂ UCk .
PC1 = PC was introduced in Pipatsrisawat and Darwiche
[19], Bordeaux and Marques-Silva [3] (unit-propagation
complete).
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Hardness measures Generalisations

Width-hardness

[11, 13] and Kullmann [12] introduced a generalised notion of width,
further studied in [14] (under the name of asymmetric width or
width-hardness) — can handle long clauses!

Kleine Büning [10] introduced k -resolution:

F `k ⊥ iff there is a resolution refutation of F , where for each
resolution step at least one parent clause has length at most k .

For F ∈ USAT we define whd(F ) as the

minimum k ∈ N0 such that F `k ⊥.

And WCk := {F ∈ CLS : whd(F ) ≤ k}.
WC0 = UC0,WC1 = UC1

UCk ⊂ WCk for k ≥ 2.
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Hardness measures Generalisations

Relative hardness

For a set V of variables we define the relative hardness’s

phdV (F ),hdV (F ),whdV (F )

by considering only partial assignments ϕ with var(ϕ) ⊆ V (for the
extensions to satisfiable clause-sets).

An AC-representation F of a boolean function f is a
CNF-representation F of f with

phdvar(f )(F ) ≤ 1.

“CNF-representation” is defined in the usual way (var(f ) ⊆ var(F ),
and the satisfying assignments of F projected to var(f ) are
precisely the satisfying assignments of f ).
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No short AC-representations

Monotonisation of boolean functions

Consider a boolean function f .

We want partial assignments to f ,
handled by a boolean function f̂ .

Every variable is doubled.
So we can encode “not assigned”.

Now

f̂ = 0 iff
the corresponding partial assignment

makes f unsatisfiable.

Example: the monotonisation of the bijective PHPm
m function is the

matching function (essentially).
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No short AC-representations

Monotone circuits

Theorem
Consider a boolean function f and a representation F with

hdvar(f )(F ) ≤ 1.

From F we can compute in time O(`(F ) · n(F )2) a monotone circuit
computing f̂ .

Corollary
Boolean functions fn have a CNF-representation Fn with
hdvar(fn)(Fn) ≤ 1 and `(Fn) = nO(1) if and only if f̂n can be computed by
monotone circuits of size polynomial in n.
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No short AC-representations

No polysize AC for XOR’s

Exploiting Babai et al. [1] (monotone span programs):

Theorem
The size of AC-representations of systems of XOR-constraints is
super-polynomial in the number of constraints.
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FPT results

AC: FPT in number of XOR-constraints

Theorem
By adding all implied XOR-clauses, and translating each of them via
X1, we obtain an AC-representation of a system of m XOR-clauses
with running time fixed-parameter tractable (fpt) in m (i.e., 2m).

We believe that this can be strengthened in two dimensions:
Instead of the “relative condition” AC, we can obtain the “absolute
condition” PC.
Instead of fpt in m, we can obtain fpt in the treewidth of the
incidence graph.

As a preliminary result in this direction, we can handle m = 2:

Lemma
By factoring out the common part of two XOR-clauses, we obtain a
translation for m = 2 to PC in linear time.
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Analysis of standard translation

Analysis of X1

With our hardness measures we can also measure what X1 is doing:
1 Already for two XOR-clauses, hardness hd can be very high,

meaning very hard (unsatisfiable) problems for tree-resolution and
look-ahead solvers (after appropriate instantiations).

2 However (symmetric as well as asymmetric) width for two
XOR-clauses is 3, and indeed the unsatisfiable problems obtained
by instantiations are very easy for conflict-driven solvers.

3 But the width-hardness whd must grow with the number of
XOR-clauses (at least) — all Tseitin formulas can be created by
instantiations.

4 A more precise and complete analysis is needed.
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Conclusion

Summary and outlook

I We believe there is a whole world to be discovered.
II Hopefully a theory of “good SAT representations” will emerge

which truly brings theory (proof theory) and practice (SAT solving)
together.

III The translation of XOR-systems is a good first test-case: Despite
the bad news “no poly-size AC-representation”, there seem to be a
lot of opportunities for good representations (under various
circumstances).
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Conclusion

End

(references on the remaining slides).

For my papers see
http://cs.swan.ac.uk/~csoliver/papers.html.
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